PHYSICAL REVIEW B 66, 100404R) (2002

RAPID COMMUNICATIONS

Heat conduction and magnetic phase behavior in electron-doped

Ca;_,La,MnO; (0=x=<0.2)

J. L. Cohrt and J. J. Neumeiér
lDepartment of Physics, University of Miami, Coral Gables, Florida 33124
2Department of Physics, Florida Atlantic University, Boca Raton, Florida
(Received 31 May 2002; published 9 September 2002

Measurements of thermal conductivityk)( vs temperature are reported for a series of Gha,MnO;(0
=x=<0.2) specimens. For the undoped=0), G-type antiferromagnetic compound a large enhancement of
below the Néktemperature Ty~ 125K) indicates a strong coupling of heat-carrying phonons to the spin
system. This enhancement exhibits a nonmonotonic behavior with increaamtjcorrelates remarkably well
with the small ferromagnetic component of the magnetization reported previdteslymeier and Cohn, Phys.
Rev. B 61 14319(2000]. Magnetoelastic polaron formation appears to underly the behaviar arid the

magnetization ak<0.02.
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Electronic phase separation has emerged as a paradigime doping range. At low dopingx&

0.02) the evolution of

for describing the ground state of strongly correlated electrox and the magnetization suggests a competition between
systems. It may underly the phenomenon of colossal mag-long-range antiferromagnetism and magnetoelastic polaron

netoresistancéCMR) in hole-doped (MA" -rich) perovskite ~ formation.

manganites studied extensively in recent years. A few studies Ca —,La,MnO; polycrystals were prepared by standard
of electron-doped (Mh' -rich) manganitesrevealed anoma- solid-state reaction; the preparation methods along with mag-
lous magnetic properties and drew attention to these confl€tization and resistivity measurements were reported
pounds. Subsequent investigatidils suggested electron- elsewheré.lodometric titration indicated the oxygen content
doped manganites to be interesting systems for studies & all specimens fell within the range 3.6@.01. The ther-

mal conductivity was measured

hase separation and polaron physics. . . ;
P P P Py vacuum probe using a differential

Undoped CaMn@ exhibits a G-type antiferromagnetic
(AFM) order belowTy~125 K. With ~20% trivalent sub-
stitution for divalent Ca, the system adopt£dype, orbit-
ally ordered AFM ground state witfiy~150-200 K, de-
pending on the dopant ions. For Fin concentrations
between these end points a small ferromagngtd) mo-
ment is observed witii-=Ty(G) and a nonmonotonic dop-

in a radiation-shielded
chromel/constantan ther-

mocouple and steady-state technique. Typical specimen di-
mensions were X 1X3 mn?. Heat losses via radiation and
conduction through leads were measured in separate experi-
ments and the data corrected accordingly. This correction
was typically 10—15 % near room temperature a&2i% for
T=<150 K. The specimens have a density oft#% that of

ing behavior; data from Ref. 3 on €ala,MnO; (0=<x

=<0.2) are shown in the inset of Fig. 1. 5 04 7ugx/%e%

A fundamental issue is whether this FM component re- Ca. LaMnO s AR
flects a homogeneous canting of AFM moments forxaith T szozr /g o
this regime, as originally proposed by deGentesr . s L’ ..
whether some portion of the phase behavior can be attributed +*++l‘f° 000 005 010 015 020
to FM droplets or polarons as found for the hole-doped 10 Foae 3,005 +“+++ﬂﬂ K, X ]
compounds?! A very recent neutron scattering std@yof 0&%
Ca_,La,MnO; constrains models for the regime 098 < 00000¢ e W
=<0.16: (1) the FM moment is perpendicular to ti AFM E .,.?;99-...W'
moment, consistent with homogeneous canting, @\dM 2 | eoosddoommmmonoo-om0o 0
clusters with sizes smaller than800 A do not exist. Similar =

experiments at low doping=0.05 have not been reported,

M '

but this regime has been investigated theoreticafl.
The present study of thermal conductivity)(vs tempera- 0.14

ture on Ca_,La,MnO; (0=x=<0.2) was motivated by the
novel phase behavior of electron-doped manganites and by T K)
prior work'>®demonstrating that the lattice thermal resistiv-

ity of manganites is a sensitive measure of bond disorder FiG. 1. Thermal conductivity
arising from distorted Mn@octahedra. Electron hopping via ca,_,La,Mn0O; polycrystals. The solid

50 100 150 200

vs temperature for
curves are polynomial fits

double exchange couples the spins to these octahedral dist@s-data in the paramagnetic phase. Inget:5 K saturation magne-
tions. For the present system the thermal conductivity clearlyization vsx for Ca,_,La,MnO; polycrystals from Ref. 3. The solid
reflects the lattice response to the FM moment throughoutne representdl g, =7 ug /Mn-ion-electron.
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FIG. 2. Doping dependence of the dimensionless thermal con-

ductivity slope change afy (I", defined in the text and of theT
=5 K saturation magnetization from Ref.(8pen triangles, right

T(K)

FIG. 3. Temperature derivative of electrical resistivity vs tem-
perature for Ca_,La,MnO5 specimens withx near 0.10. Features

ordinatg. Open circles with solid lines are computed from magne-marked by arrows indicate electronic delocalization belyy
tization data as discussed in the text and @g.

~110 K.

fully dense material, with no systematic dependence on dopsgntribute negligibly to x near Tc for ferromagnetic

ing; no porosity corrections have been applied.

for CaMnQ;(x=0) indicate a large enhancement efat
temperatures beloWy(G) =125 K[for the remainder of the

; ; , compositions® The subsequent analysis supports a lattice
Figure 1 shows«(T) for a series of specimens. The data regponse to magnetic order as the mechanisni for these

compounds.

The observatioth’«< Mg, for x=0.03 is reminiscent of the

paper we writeTy to meanTy(G)]. The other compounds  pehavior found for CMR compound8The lattice contribu-
also show an enhancement, but with a diminished magnigon to « in CMR materials is enhanced below the zero-field

tude. For all values ok the electronic contribution ta at
T<150 K, as inferred from the electrical resistivitgnd the
Wiedemann-Franz relation, is less than 5% of the measureg,

FM transition temperature and in applied magnetic field at
fixed T nearT. This lattice response correlates with a re-
ced distortion of the Mng octahedra that accompanies

value. Furthermore, no substantial changes were observed iy hle-exchange mediated charge delocalization. Underlying
resistivities throughy . Thus the enhancement is associatetine field andT-dependent thermal resistivith\(= 1/x) of
with either a magnon or phonon contribution to heat conducLaO Sl.1MNO; is a simple magnetization dependedte

tion.

W(M)—W(0)x —M?(H,T).

To characterize the enhancement, we define the dimen- We now show that the nonmonotonic behaviorIt()

sionless change in slope, evaluated just belgy asl'=
—d(«/kp)/dt|;_;, where k, is the T-dependent thermal
conductivity in the paramagnetic stateT>Ty) and t
=T/Ty. The behavior ofk, at T<Ty is taken as the ex-
trapolation of polynomial fits to data > Ty (solid curves
in Fig. 1). The doping behavioF (x) is shown in Fig. 2; of
particular interest is the nonmonotonic behavib(x) ap-

decreasing withx and operative fok=<0.02, and a term pro-
portional to the FM saturation momefupen triangles and

right ordinate, Fig. 2 operative forx=0.03.

Increases inc at AF transitions have been observed pre-
viously in MnO (Ref. 19 and LaMnQ (Ref. 18 crystals. =
The former material undergoes a substantial crystallographic

just belowTy:

T
TPy

d™m
dT

distortion below Ty (magnetostriction and this suggests
changes in the lattice heat conduction as a likely mechanistdsing the availableM (T) curves measured ati=2kOe,
for its x enhancement. Lattice anomalies associated witlexcellent agreemeftitof I'(x) with Eq. (1) was found for all

magneto or exchange striction are quite smaft%¥taMnO,
and®-?2 CaMnQ,. Nevertheless, prior wotR® demon-
strated that the lattice thermal resistivity of manganite$ at
=300 K is controlled principally by distortions of the MO

and solid curve, Fig. 2

dM,
T—»TN_F

for Ca _,La,MnOg is remarkably well reproduced by a simi-
lar phenomenological assumption far<Ty: W(M,T)
—W(0,T)xM(T)—=Mp(T). M(T) is the magnetization of
the paramagnetic phase. For zero-field measuremii{E)

is the spontaneous magnetization)(M,T)=«x"1 is the
measured thermal resistivity, aMi(0,T)=«, ! (the hypo-
thetical thermal resistivity in the absence of magnetic grder
Mhis assumption implies th&t should be proportional to the
normalized change in slope of the magnetization, evaluated

)EBFM D

T—>TN

X, with proportionality constang=2.52x 10”4 (open circles

This result is most easily interpreted in the regime
=0.03 wherd «Mg,;. Though no insulator-metal transition

octahedra through their influence on phonon scattering ratetakes place affy akin to that atT; in CMR compounds,
The latter can be substantially more sensitive to internathere is clear evidence in electrical resistivity measurements
structural modifications than are lattice or elastic constantsiearx=0.10 that some electron delocalization takes place
Heat conduction by magnons could contribute to the enbelow Ty; the slopes,—(1/p)dp/dT, exhibit an abrupt
hancement, but this seems less likely given that magnonshange at the transitioffFig. 3). In analogy with the case of
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0.03

havior of the slopalMg,/dx is of interest(inset, Fig. 1. It
increases from~1ug/Mn-ion-electron for x<0.02 to
~7 ug/Mn-ion-electron for 0.08x=<0.08. The latter is the
value expected if each La dopant adds a symmetric seven-
site FM polaror® determined in calculatioh$ to be the
stable ground state for this system. The vak#e0.03 ap-
pears to mark a crossover between regimes. The mean spac-
ing between dopant ions is estimatedrag= (3V/16mx)*
(V=207 A3 is the unit cell volumé? containing four f.u.’$.
Forx=0.03,r ,=7.4 A, equal to the third-nearest-neighbor
0.00 Mn distance. This would be the distance between the centers
100 110 120 130 140 of seven-site polarons sharing a single Mn s#epolaron
T(K) “cluster”), but other polaron configurations are close in
ground-state energy and might be favored if interactions not
yet considered in calculatioi'fs(e.g., defects, next-nearest-
neighbor exchangeplay a role. For example, larger polarons

CMR materials, the correlation betweErand magnetization with canted-spin arrangements are interesting candidates be-
in this regime is plausibly attributed to enhanced electrorfause the large-scale clusters anticipated at higher doping
hopping mediated by double exchange between aligibti ~ could evolve smoothly into the long-range, spin-canted state
droplet scenarip or partially aligned (canting scenario  proposed on the basis of neutron scattefirigr x=0.06.
spins. Enhanced electron transfer reduces the average distor-A model that distinguishes between isolated and clustered
tion of the MnQ, octahedra and associated phonon scatteringolarons describes the qualitative features of the experimen-
within the FM regions of the specimen. THatfollows both  tal results. We propose that tiig =125 K transition in Fig.
MsarandI'™ is consistent with a conventional magnetization4 is associated with isolated polarofi®., those without ad-
of the formM =M, (T) wheref(T) reflects the order pa- jacent polaronsand the lowefF transition to clusters of
rameter of the FM phase. two or more polarons. This is plausible since the balance
The regimex=<0.02 is more complicated sindéds,;has a  between kinetic, lattice and spin energies, possibly different
very differentx dependence from that & (andT"). These for a cluster, could yield a polaronic state less robust against
different doping behaviors entail a crossing of thgT)  thermal fluctuations. Presumably a smédrincipally iso-
curves for differenk at T<Ty (Fig. 4. The data suggest that lated polaron density ak=0 is associated with native de-
two independent components contribute to the magnetizatiofects (e.g., oxygen or Mn vacancigsWith increasing La
in this regime, one withT =125 K, characterizing the un- doping, polaron clusters are produced at the expense of iso-
doped specimen, and the other wikg=<115 K, character- lated polarons. For a random distribution, the probability for
izing x=0.04. A smooth evolution between the two is re-two or more polarons to share a Mn site grows rapidly for
flected in theM(T) data for the intervening compositions. seven-site or larger polarons given the large number of Mn
This coexistence is most evident in the curvexer0.02 as  sites over which electrons may be distributed to define a
an inflection neaif =110 K. cluster. This provides a natural explanation for the rapid de-
I follows the diminution of the higheT- transition and crease of” andI' with x at x=<0.02, and for their minima
presumably has its origin in the same coupling between spinat x~0.03 where the FM transition is maximally nonuni-
and octahedral distortions underlying the responsex at form.
=0.03. Supporting this hypothesis is a recent study of Ra- What is the origin of the small value fatMg,,/dx at x
man scattering in similar compountfs Sharply enhanced =<0.02 and its increase nea#0.03? One possibility is that
Raman intensities al<Ty for low-frequency, rotational, these features reflect differing magnetic moments for isolated
and bending modes of the oxygen octahedra were observeahd clustered polaronge.g., different canting angles for
for CaMnQ;. With increasing La doping this enhancementspin-canted polaronsAlternatively, these features might re-
below T was diminished, and was absent fo£0.03, very flect a change in the number of polarons induced per dopant,
similar to the trend observed here for It seems likely that e.g., if perturbations associated with defe@tacancies, La
the two phenomena are related. ions) suppress polaron formation &0.02. Experimental
Another important experimental result relevant to a de-dnvestigations that better define the polaron characteristics
scription of the data at lowx comes from recent magnetic are required to refine these ideas.
neutron scattering studies of & 0.02 compound in mag- In summary, systematic changes in the behavior of the
netic field?* The field dependence of the AF scattering inten-thermal conductivity at the AF transition in La-doped
sity was inconsistent with a FM component arising from ei-CaMnQ; and their correlation with magnetization measure-
ther uniform spin canting or ferrimagnetism; the FM ments indicate that the lattice thermal resistivity is a sensitive
component islecoupledrom the AF background in applied probe of FM interactions through the coupling of spins to
field. local distortions of the Mn@octahedra. This extends similar
These observations implicate magnetoelastic polarons inonclusions obtained previously for hole-doped, CMR
the FM and lattice response at low In this regard the be- compound¥!®to the present system where the ground state

Ca,_ La MnO,

0.02

M(pg/Mn ion)

0.01

FIG. 4. Magnetization aH=2000 Oe for lightly doped speci-
mens.
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