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Transport measurements (electrical resistivity, Seebeck coefficient, and thermal conductivity) in

the temperature range 80–500 K are presented for single crystals of the quasi-one-dimensional

(Q1D) semiconductor Li0.33MoO3. Opposite signs are observed for the Seebeck coefficient along

the trinclinic a and c axes, with Sc � Sa ’ 250 lV/K near room temperature and ’100 lV/K at

380 K. The thermal conductivity at room temperature in the a-c planes was �2 W/m K and �10

times smaller along b*. A weak structural anomaly at Ts� 355 K, identified in the temperature-

dependent lattice constants, coincides with anomalies in the electrical properties. Analysis of the

electronic transport at T>Ts favors an intrinsic semiconductor picture for transport along the most

conducting Q1D axis and small-polaronic transport along the other directions, providing insight

into the origin of the Seebeck anisotropy. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4943071]

I. INTRODUCTION

Bulk materials with highly anisotropic Seebeck coeffi-

cients are potential candidates for transverse thermoelectric

applications1,2 but are quite rare. The molybdenum oxide

bronzes3 are a class of low-dimensional materials that

have potential as anisotropic thermoelectrics. Recently, we

reported that the quasi-one-dimensional (Q1D) metal,

Li0.9Mo6O17 (lithium purple bronze), has extreme anisotropy

in its Seebeck coefficient along mutually perpendicular crys-

tallographic axes (�200 lV/K) and exhibits among the larg-

est known transverse thermoelectric figures of merit of any

bulk material.4 A closely related Q1D compound which we

discuss here is Li0.33MoO3. Like lithium purple bronze, it

was first synthesized in the 1980s,5–7 but transport studies,

showing it to be a narrow-gap semiconductor, were limited

to resistivity along two of the main symmetry directions.

Li0.33MoO3 is unique among Mo bronzes in possessing

a triclinic structure (Fig. 1), with lattice constants7

a¼ 13.079 Å, b¼ 15.453 Å, and c¼ 7.476 Å, and angles,

a¼ 96.97�, b¼ 106.56�, and c¼ 103.368�. The most con-

ducting c axis is characterized by infinite chains of corner-

sharing MoO6 octahedra with good Mo-O-Mo dt2g –pp orbital

overlap associated with Mo-O bondlengths, 1.86–1.995 Å.

The direction transverse to the a-c planes (designated b*) is

characterized by both corner- and edge-sharing MoO6 octa-

hedra, with some Mo-O distances as large as 2.7 Å and

thus much poorer overlap. Tight binding band calculations9

indicate that Li0.33MoO3 is a small-gap semiconductor

(Eg� 0.10 eV), in reasonable agreement with resistivity

measurements.10 This prior work10 identified a change in

the c-axis resistivity temperature dependence near 360 K,

suggestive of a broad phase transition; differential scanning

calorimetry and powder x-ray diffraction showed no signa-

ture of this transition. Our measurements show the Seebeck

coefficient along the most conducting c axis to be particu-

larly sensitive to this transition, and we present temperature-

dependent, single-crystal x-ray diffraction studies which

reveal a weak structural anomaly upon cooling through

Ts� 355 K. Li0.33MoO3 is found to be a rare p� n-type

material,2 having opposite signs for the Seebeck coefficient

FIG. 1. (a) The triclinic unit cell of Li0.33MoO3. Conduction pathways con-

sist of edge- and corner-sharing MoO6 octahedra (shaded). Projections of a

single atomic layer are shown within the (b) ac-plane viewed along the b
axis and (c) ab-plane viewed along the c axis. The c-axis corresponds to the

most conducting (Q1D) direction. Rendered with VESTA software (Ref. 8).
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along the crystal axes of the a-c planes in the entire tempera-

ture range explored, leading to extreme anisotropy, Sc � Sa

’ 250 lV/K at 300 K. Even at T> Ts, the Seebeck anisotropy

remains quite large, Sc � Sa ’ 100 lV/K at 380 K. The ori-

gin of this anisotropy is examined by analyzing the data with

both intrinsic semiconductor and small-polaron models.

II. EXPERIMENT

Single crystals were grown using the temperature-gradient

flux method.6,11 Li2MoO4, MoO3, and MoO2 were mixed

according to the formula nLi2MoO4þ 2(1� n)MoO3

þ nMoO2! 2LinMoO3, with n¼ 0.26. The crystal charge had

a total mass of 10 g. It was placed in a fused silica tube with

inside diameter 1.2 cm and length 16 cm on Pt foil to minimize

reaction with the silica. The tube was evacuated for 4 h and

sealed under a vacuum of 1.4� 10�2 mbar. It was placed in a

furnace and warmed over a period of 2 h to the maximum tem-

perature where it remained for 124 h, such that one end of the

tube was at 586 �C and the other at 632 �C. Subsequently, it

was cooled over a period of 2 h to room temperature. Crystals

of Li0.33MoO3 were mechanically removed from the flux.

Precision lattice constants were determined by high-

angle extrapolation12 of the (h00), (0k0), and (00l) reflections

(with error bars � 60.0007 Å). Specimens for transport

measurements were cut with a wire saw into parallelepipeds

with typical dimensions, 1.5� 0.5� 0.2 mm3. Electrical con-

tacts for four-wire measurements employed silver epoxy,

annealed at 330 �C for 1 h, and 25 lm-diameter Au wires.

Current contacts covered the specimen ends, and voltage

contacts encircled the crystal across both large faces and the

sides. Thermopower and thermal conductivity measurements

employed a steady-state method using a small chip heater

and 25 lm differential chromel-constantan thermocouple,

each attached to the specimen with epoxy (Stycast 2850 FT).

The temperature of the Cu heat sink was measured using a

platinum sensor. Heat losses due to radiation and conduction

through lead wires were determined in separate experiments;

these corrections were 20%–30% near room temperature.

The accuracy of the measurements is limited by uncertainty

in the geometric factor to 20%. The measurements were per-

formed on three crystals each along the a and c directions,

and for two crystals along the b* direction; good reproduci-

bility was observed.

III. RESULTS

A. Transport coefficients

Figure 2 shows the temperature-dependent electrical re-

sistivity (q) and the Seebeck coefficient (S) along three crys-

tallographic axes for several Li0.33MoO3 crystals. The

electronic transition near 355 K is clearly seen in the c-axis

resistivity and Seebeck data and is accentuated in the loga-

rithmic temperature derivative of qc (inset, Fig. 2). The pres-

ent crystals have values for qc that are a factor of 10 larger

than those reported by Collins et al.10 The reproducibility of

this result in three separate crystals with differing thick-

nesses and aspect ratios makes it unlikely to be attributable

to “contamination” by contributions from the other transport

directions due to inhomogeneous current flow. The differ-

ence is possibly extrinsic, i.e., associated with different dop-

ing levels. The resistivity ratios of the present crystals are

qc : qa : qb� ’ 1 : 20 : 180 at 300 K and 1:50:330 at 375 K,

and thus Li0.33MoO3 is appropriately categorized as a Q1D

semiconductor. Particularly noteworthy for potential trans-

verse thermoelectric applications is the opposite sign for the

a- and c-axis Seebeck coefficients, yielding extreme anisot-

ropy, DS¼ Sc � Sa ’ 250 lV/K at 300 K.

The thermal conductivity (j) is quite low for all direc-

tions (Fig. 3), �2 W/m K within the a-c plane at room

temperature and about 10 times smaller along b*. The

Wiedemann-Franz law and the electrical resistivity imply a

negligible electronic contribution to j, and thus the data in

Fig. 3 reflect the anisotropy of lattice conduction. We expect

relatively little anisotropy within the a-c planes, consistent

with observations. The anisotropy ratio jac=jb� � 10 is typi-

cal of layered insulators and low-carrier density materials

(e.g., mica and graphite).13,14

B. Structural anomaly near T 5 355 K

A structural signature of the electronic transition, not

established in prior work,10 is revealed at Ts� 355 K in the

lattice constant temperature dependencies (Fig. 4). Upon

cooling through Ts, the data show a slight lattice contraction

(by ’0.001 Å) along the a* direction, and expansions com-

parable in magnitude along b* and c* (for c*, this is an upper

bound given additional scatter). Most noteworthy is the

opposite sign and substantially smaller magnitude of the

temperature derivative of the c* lattice constant as compared

FIG. 2. Resistivity and Seebeck coefficient of Li0.33MoO3 crystals in the

range of 200–500 K for three crystallographic directions. Inset: Logarithmic

temperature derivative of qc highlighting the transition at Ts ’ 355 K.
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to those for the other two directions (solid lines and labels).

The structural feature at Ts likely involves a subtle rearrange-

ment of the tilt pattern and/or distortion of some of the

MoO6 octahedra.

IV. ANALYSIS AND DISCUSSION

We focus our analysis on the regime T>Ts¼ 355 K

where the charge transport exhibits a simple thermally

activated behavior (shown in Fig. 5 for c-axis transport). A

key observation for assessing the transport mechanism is that

the characteristic activation energy for the resistivity exceeds

that of the thermopower for all transport directions. This dic-

tates consideration of two transport models: (1) intrinsic

band semiconductor and (2) small-polaron. For an intrinsic

semiconductor15

q ¼ q0 exp Eg=2kBT
� �

;

S ¼ � kB

jej
b� 1

bþ 1

Eg0

2kBT
þ 2þ c

2kB

� �
;

(1)

where Eg¼Eg0þ cT is the temperature-dependent energy

gap (approximated as linear-in-T), and b¼le/lh is the elec-

tron/hole mobility ratio. The constant term, 2, in the paren-

theses of the thermopower expression assumes predominant

acoustic-mode lattice scattering of the carriers.

In contrast, q and S for small polarons are given by16,17

q ¼ �ha

c 1� cð Þe2

T

T0

� �s

exp Eq=kBT
� �

;

S ¼ kB

jej
ES

kBT
� ln

c 1� cð Þ
1� 2cð Þ2

" #
;

(2)

where a is the hopping distance, c is the polaron concentra-

tion, and T0 is an energy scale that depends on whether the

FIG. 4. Lattice constants vs. T for single-crystal Li0.33MoO3. The error bars

for a* and b* are 60.0005 Å and 60.0007 Å for c*. The solid lines are lin-

ear least-squares fits to the data for T�Ts ’ 355 K.

FIG. 5. (a) qc and Sc plotted against inverse temperature, showing thermally

activated behavior near Ts ’ 355 K. The solid lines are linear least-squares

fits. (b) Resistivity data for all directions, extended to lower T.

FIG. 3. Thermal conductivity of Li0.33MoO3 single crystals along different

crystallographic axes. The error bar reflects a 20% uncertainty in the geo-

metric factor.
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electronic motion is faster than that of the lattice (adiabatic

limit, s¼ 1) or not (non-adiabatic, s¼ 3/2). In the adiabatic

limit, kBT0 ¼ �hx0, where x0� 1014 s�1 is an optical phonon

frequency. The condition for non-adiabatic behavior is

kBT0 	 �hx0. Using the experimental data, discussed further

below, we find kBT0 	 �hx0, thus favoring the non-adiabatic

limit. Within small-polaron theory, Eq 
 ES because ES

includes only the energy required to thermally excite a

charge carrier from the Fermi level to the polaron band,

whereas Eq includes, in addition, the lattice distortion

energy.

We first fit the data at T>Ts to the intrinsic semiconduc-

tor model, Eq. (1). The results for the c-axis transport are

shown in Fig. 5(a) and imply Eg0/kB¼ 3550 K (Eg0

’ 0.31 eV), c¼�0.88 meV/K, and b ’ 0.45, i.e., the hole

mobility is about twice that of electrons. This value of Eg0 is

somewhat larger than predicted from tight-binding band

calculations,9 which considered only the infinite chains of

MoO6 octahedra along the c axis relevant to dxy bands dis-

persing along the C–Z direction of the Brillouin zone. In the

temperature regime just below Ts, the fitting of qc(T) yields

Eg0/kB ’ 4610 K (Eg0 ’ 0.40 eV), i.e., the structural transi-

tion increases the energy gap by about 30%. The parameters

from similar analyses of the a- and b*-axis data are summar-

ized in Table I. At lower temperatures [Fig. 5(b)], the q(T)

data for all directions become weakly T-dependent, indicat-

ing impurity conduction (along c) or small-polaron band

conduction (along a and b*—see below). Supporting this,

the maxima and subsequent decline in the magnitudes of Sc

and Sb� at T � 200 K suggest a finite density of states at EF

as T! 0.

The values for c� dEg/dT are larger than for typical

semiconductors,18,19 by a plausible factor of two for the c
axis, but appear to be unphysically large for the a and b*

directions. This is a consequence of the larger values of b
required within the model to produce the much smaller ther-

mopower activation energies for these crystallographic direc-

tions. In fact, the T ! 1 intercepts of the thermopower

(negative for all directions) do not differ substantially in

magnitude (varying from �1.2 to �0.36 in kB/e units), thus

the Seebeck anisotropy in the measured temperature range is

largely attributable to these smaller activation energies, and

thus motivates consideration of the small-polaron model.

The parameters from fitting the electronic transport data

to the non-adiabatic, small-polaron model [Eq. (2)] are listed

in Table II. In computing T0, we assume a value for the

hopping distance a¼ 5 Å, i.e., an average of the Mo-Mo

nearest-neighbor and next-nearest-neighbor distances. For

completeness, we include the parameters for the c axis in

Table II, but it is clear that such an analysis is not self con-

sistent. Our analysis thus favors an intrinsic semiconductor

picture for the electronic transport along the Q1D (c) axis

and transport via non-adiabatic small polarons along the

other crystallographic directions.

In summary, the Q1D semiconductor Li0.33MoO3 is a

p� n-type thermoelectric material with large Seebeck ani-

sotropy within its triclinic a-c planes. A weak structural

anomaly, coincident with changes in the electronic transport

at 355 K, was identified by small changes in the lattice

parameters (�0.001 Å). Analysis of the transport at tempera-

tures above the transition suggests that an intrinsic semicon-

ductor picture for transport along the most conducting c axis

is appropriate, with a hole mobility about twice that of elec-

trons. Along the a and b* directions, a non-adiabatic small-

polaron model was found to be a better description of the

data. This dichotomy of transport mechanisms appears to be

responsible for the substantially different thermopower acti-

vation energies characterizing the transport along the Q1D c
axis as compared to the other crystallographic directions and

is the origin of the Seebeck anisotropy.
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