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Anisotropic transport in the quasi-one-dimensional semiconductor
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Transport measurements (electrical resistivity, Seebeck coefficient, and thermal conductivity) in
the temperature range 80-500K are presented for single crystals of the quasi-one-dimensional
(Q1D) semiconductor Lig33Mo003. Opposite signs are observed for the Seebeck coefficient along
the trinclinic a and ¢ axes, with §. — S, ~ 250 uV/K near room temperature and ~100 ¢V/K at
380K. The thermal conductivity at room temperature in the a-c planes was ~2 W/m K and ~10
times smaller along b*. A weak structural anomaly at Ty~ 355K, identified in the temperature-
dependent lattice constants, coincides with anomalies in the electrical properties. Analysis of the
electronic transport at T > T favors an intrinsic semiconductor picture for transport along the most
conducting Q1D axis and small-polaronic transport along the other directions, providing insight
into the origin of the Seebeck anisotropy. © 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4943071]

I. INTRODUCTION

Bulk materials with highly anisotropic Seebeck coeffi-
cients are potential candidates for transverse thermoelectric
applications'? but are quite rare. The molybdenum oxide
bronzes® are a class of low-dimensional materials that
have potential as anisotropic thermoelectrics. Recently, we
reported that the quasi-one-dimensional (Q1D) metal,
Lip9MogO17 (lithium purple bronze), has extreme anisotropy
in its Seebeck coefficient along mutually perpendicular crys-
tallographic axes (~200 ©V/K) and exhibits among the larg-
est known transverse thermoelectric figures of merit of any
bulk material.* A closely related Q1D compound which we
discuss here is Lip33Mo00O;. Like lithium purple bronze, it
was first synthesized in the 19805,5*7 but transport studies,
showing it to be a narrow-gap semiconductor, were limited
to resistivity along two of the main symmetry directions.

Lip 33Mo00Oj3 is unique among Mo bronzes in possessing
a triclinic structure (Fig. 1), with lattice constants’
a=13.079A, b=15453A, and ¢=7.476A, and angles,
2=96.97°, f=106.56°, and y=103.368°. The most con-
ducting ¢ axis is characterized by infinite chains of corner-
sharing MoOg octahedra with good Mo-O-Mo d,,,—pn orbitgl
overlap associated with Mo-O bondlengths, 1.86-1.995 A.
The direction transverse to the a-c planes (designated b¥) is
characterized by both corner- and edge-sharing MoOg octa-
hedra, with some Mo-O distances as large as 2.7A and
thus much poorer overlap. Tight binding band calculations’
indicate that Lip33Mo00;3; is a small-gap semiconductor
(E,~0.10eV), in reasonable agreement with resistivity
measurements.'® This prior work'® identified a change in
the c-axis resistivity temperature dependence near 360K,
suggestive of a broad phase transition; differential scanning
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calorimetry and powder x-ray diffraction showed no signa-
ture of this transition. Our measurements show the Seebeck
coefficient along the most conducting ¢ axis to be particu-
larly sensitive to this transition, and we present temperature-
dependent, single-crystal x-ray diffraction studies which
reveal a weak structural anomaly upon cooling through
T,~355K. Lip33Mo00;3 is found to be a rare p X n-type
material,? having opposite signs for the Seebeck coefficient

FIG. 1. (a) The triclinic unit cell of Liy33M00;. Conduction pathways con-
sist of edge- and corner-sharing MoOg octahedra (shaded). Projections of a
single atomic layer are shown within the (b) ac-plane viewed along the b
axis and (c) ab-plane viewed along the ¢ axis. The c-axis corresponds to the
most conducting (Q1D) direction. Rendered with VESTA software (Ref. 8).
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along the crystal axes of the a-c planes in the entire tempera-
ture range explored, leading to extreme anisotropy, S, — S,
~ 250 uV/K at 300 K. Even at T > T, the Seebeck anisotropy
remains quite large, S. — S, ~ 100 uV/K at 380 K. The ori-
gin of this anisotropy is examined by analyzing the data with
both intrinsic semiconductor and small-polaron models.

Il. EXPERIMENT

Single crystals were grown using the temperature-gradient
flux method.®!! Li,MoO,4, MoOs, and MoO, were mixed
according to the formula nLi;MoOy4+ 2(1 —n)MoO;
+ nMoO, — 2Li,MoO3, with n =0.26. The crystal charge had
a total mass of 10g. It was placed in a fused silica tube with
inside diameter 1.2 cm and length 16 cm on Pt foil to minimize
reaction with the silica. The tube was evacuated for 4 h and
sealed under a vacuum of 1.4 x 10~ mbar. It was placed in a
furnace and warmed over a period of 2 h to the maximum tem-
perature where it remained for 124 h, such that one end of the
tube was at 586 °C and the other at 632°C. Subsequently, it
was cooled over a period of 2h to room temperature. Crystals
of Lip33Mo003 were mechanically removed from the flux.

Precision lattice constants were determined by high-
angle extrapolationl2 of the (h00), (0k0), and (00/) reflections
(with error bars =< +0.0007 A). Specimens for transport
measurements were cut with a wire saw into parallelepipeds
with typical dimensions, 1.5 x 0.5 x 0.2 mm?. Electrical con-
tacts for four-wire measurements employed silver epoxy,
annealed at 330°C for 1h, and 25 um-diameter Au wires.
Current contacts covered the specimen ends, and voltage
contacts encircled the crystal across both large faces and the
sides. Thermopower and thermal conductivity measurements
employed a steady-state method using a small chip heater
and 25 um differential chromel-constantan thermocouple,
each attached to the specimen with epoxy (Stycast 2850 FT).
The temperature of the Cu heat sink was measured using a
platinum sensor. Heat losses due to radiation and conduction
through lead wires were determined in separate experiments;
these corrections were 20%-30% near room temperature.
The accuracy of the measurements is limited by uncertainty
in the geometric factor to 20%. The measurements were per-
formed on three crystals each along the @ and ¢ directions,
and for two crystals along the b* direction; good reproduci-
bility was observed.

lll. RESULTS
A. Transport coefficients

Figure 2 shows the temperature-dependent electrical re-
sistivity (p) and the Seebeck coefficient (S) along three crys-
tallographic axes for several Lip3;3MoO; crystals. The
electronic transition near 355K is clearly seen in the c-axis
resistivity and Seebeck data and is accentuated in the loga-
rithmic temperature derivative of p. (inset, Fig. 2). The pres-
ent crystals have values for p. that are a factor of 10 larger
than those reported by Collins e al.'® The reproducibility of
this result in three separate crystals with differing thick-
nesses and aspect ratios makes it unlikely to be attributable
to “contamination” by contributions from the other transport
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FIG. 2. Resistivity and Seebeck coefficient of Lijp33Mo00O3 crystals in the
range of 200-500K for three crystallographic directions. Inset: Logarithmic
temperature derivative of p. highlighting the transition at 7 ~ 355 K.

directions due to inhomogeneous current flow. The differ-
ence is possibly extrinsic, i.e., associated with different dop-
ing levels. The resistivity ratios of the present crystals are
PetPgt Ppr = 1:20:180 at 300K and 1:50:330 at 375K,
and thus Li33Mo00; is appropriately categorized as a Q1D
semiconductor. Particularly noteworthy for potential trans-
verse thermoelectric applications is the opposite sign for the
a- and c-axis Seebeck coefficients, yielding extreme anisot-
ropy, AS=S, — S, ~ 250 uV/K at 300 K.

The thermal conductivity (k) is quite low for all direc-
tions (Fig. 3), ~2 W/m K within the a-c plane at room
temperature and about 10 times smaller along b*. The
Wiedemann-Franz law and the electrical resistivity imply a
negligible electronic contribution to x, and thus the data in
Fig. 3 reflect the anisotropy of lattice conduction. We expect
relatively little anisotropy within the a-c planes, consistent
with observations. The anisotropy ratio k,./Kkp ~ 10 is typi-
cal of layered insulators and low-carrier density materials
(e.g., mica and graphite).'>'*

B. Structural anomaly near T = 355K

A structural signature of the electronic transition, not
established in prior work,10 is revealed at Ty~ 355K in the
lattice constant temperature dependencies (Fig. 4). Upon
cooling through T}, the data show a slight lattice contraction
(by ~0.001 A) along the a* direction, and expansions com-
parable in magnitude along »* and ¢* (for c*, this is an upper
bound given additional scatter). Most noteworthy is the
opposite sign and substantially smaller magnitude of the
temperature derivative of the ¢* lattice constant as compared
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FIG. 3. Thermal conductivity of Lip33Mo005 single crystals along different
crystallographic axes. The error bar reflects a 20% uncertainty in the geo-
metric factor.

to those for the other two directions (solid lines and labels).
The structural feature at T likely involves a subtle rearrange-
ment of the tilt pattern and/or distortion of some of the
MoOg octahedra.

IV. ANALYSIS AND DISCUSSION

We focus our analysis on the regime 7>T7,=355K
where the charge transport exhibits a simple thermally
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FIG. 4. Lattice constants vs. T for single-crystal Lig33M00;. The error bars
for a* and b* are =0.0005 A and *0.0007 A for ¢*. The solid lines are lin-
ear least-squares fits to the data for 7> T, ~ 355 K.
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activated behavior (shown in Fig. 5 for c-axis transport). A
key observation for assessing the transport mechanism is that
the characteristic activation energy for the resistivity exceeds
that of the thermopower for all transport directions. This dic-
tates consideration of two transport models: (1) intrinsic
band semiconductor and (2) small-polaron. For an intrinsic
semiconductor'”

p = poexp(Eg/2kgT),
ky f—1 [ E, ; 1
B p ( 20 1o y >’ )

el B+ 1 \2ksT 2kp

where E,=FE, +)T is the temperature-dependent energy
gap (approximated as linear-in-T), and f§ = p./p, is the elec-
tron/hole mobility ratio. The constant term, 2, in the paren-
theses of the thermopower expression assumes predominant
acoustic-mode lattice scattering of the carriers.

In contrast, p and S for small polarons are given by'®!”
ha T\®
=—— (=) exp(E,/ksT),
P c(1 —c)e? (To) p(Ep/ksT)
2
_ kg | Es c(1—¢) @
le| [keT (1 —2¢)*|

where a is the hopping distance, c is the polaron concentra-
tion, and Ty is an energy scale that depends on whether the
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FIG. 5. (a) p. and S, plotted against inverse temperature, showing thermally
activated behavior near Ty ~ 355 K. The solid lines are linear least-squares
fits. (b) Resistivity data for all directions, extended to lower 7.
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electronic motion is faster than that of the lattice (adiabatic
limit, s =1) or not (non-adiabatic, s =3/2). In the adiabatic
limit, kgTy = hwy, where wg~ 10"s7 " is an optical phonon
frequency. The condition for non-adiabatic behavior is
kgTy < hayg. Using the experimental data, discussed further
below, we find kzTy < iy, thus favoring the non-adiabatic
limit. Within small-polaron theory, E, > Eg because Eg
includes only the energy required to thermally excite a
charge carrier from the Fermi level to the polaron band,
whereas E, includes, in addition, the lattice distortion
energy.

We first fit the data at T > T, to the intrinsic semiconduc-
tor model, Eq. (1). The results for the c-axis transport are
shown in Fig. 5(a) and imply E,o/ky=3550K (Eq
~0.31eV), y=-0.88meV/K, and ff ~ 0.45, i.e., the hole
mobility is about twice that of electrons. This value of Eg is
somewhat larger than predicted from tight-binding band
calculations,” which considered only the infinite chains of
MoOg octahedra along the ¢ axis relevant to d,, bands dis-
persing along the I'-Z direction of the Brillouin zone. In the
temperature regime just below Ty, the fitting of p(T) yields
Eqolkg ~ 4610K (E,o ~ 0.40€V), i.e., the structural transi-
tion increases the energy gap by about 30%. The parameters
from similar analyses of the a- and b*-axis data are summar-
ized in Table I. At lower temperatures [Fig. 5(b)], the p(T)
data for all directions become weakly T-dependent, indicat-
ing impurity conduction (along ¢) or small-polaron band
conduction (along a and b*—see below). Supporting this,
the maxima and subsequent decline in the magnitudes of S,
and S, at T = 200K suggest a finite density of states at Er
asT — 0.

The values for y=dE,/dT are larger than for typical
semiconductors,'®'® by a plausible factor of two for the ¢
axis, but appear to be unphysically large for the a and b*
directions. This is a consequence of the larger values of f§
required within the model to produce the much smaller ther-
mopower activation energies for these crystallographic direc-
tions. In fact, the T — oo intercepts of the thermopower
(negative for all directions) do not differ substantially in
magnitude (varying from —1.2 to —0.36 in kp/e units), thus
the Seebeck anisotropy in the measured temperature range is
largely attributable to these smaller activation energies, and
thus motivates consideration of the small-polaron model.

The parameters from fitting the electronic transport data
to the non-adiabatic, small-polaron model [Eq. (2)] are listed
in Table II. In computing T,,, we assume a value for the
hopping distance a=5A, ie., an average of the Mo-Mo
nearest-neighbor and next-nearest-neighbor distances. For

TABLE I. Energy gap, resistivity prefactor (pg), electron/hole mobility ratio
(B), and energy gap linear temperature coefficient (y), determined from fits
to the T>Ty p(T) and S(T) data using the intrinsic semiconductor model,
Eq. (1).

Axis Eg (eV) Po(mQ cm) p 7(meV/K)
c 0.31 1.82 0.45 —0.88
a 0.25 214 0.87 —2.28
b* 0.33 411 0.86 —1.16
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TABLE II. Activation energies and other parameters from fits to the 7> T
p(T) and S(T) data using the non-adiabatic small-polaron model, Eq. (2).
The values for T, assume a hopping length a =5 A.

Axis  E,(eV)  EsmeV)  po(uQcm/K>/?) c To (K)
c 0.210 59.1 435%1072 0.634 0.075
a 0.183 8.50 4.97 0.660 324
b* 0.224 12.6 9.31 0.693 22.1

completeness, we include the parameters for the ¢ axis in
Table II, but it is clear that such an analysis is not self con-
sistent. Our analysis thus favors an intrinsic semiconductor
picture for the electronic transport along the Q1D (c¢) axis
and transport via non-adiabatic small polarons along the
other crystallographic directions.

In summary, the Q1D semiconductor Lij33Mo003 is a
p X n-type thermoelectric material with large Seebeck ani-
sotropy within its triclinic a-c planes. A weak structural
anomaly, coincident with changes in the electronic transport
at 355K, was identified by small changes in the lattice
parameters (~0.001 A). Analysis of the transport at tempera-
tures above the transition suggests that an intrinsic semicon-
ductor picture for transport along the most conducting ¢ axis
is appropriate, with a hole mobility about twice that of elec-
trons. Along the a and b* directions, a non-adiabatic small-
polaron model was found to be a better description of the
data. This dichotomy of transport mechanisms appears to be
responsible for the substantially different thermopower acti-
vation energies characterizing the transport along the Q1D ¢
axis as compared to the other crystallographic directions and
is the origin of the Seebeck anisotropy.
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