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Superconductivity at carrier density 1017 cm−3 in quasi-one-dimensional Li0.9Mo6O17
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Quasi-one-dimensional systems, having tendencies toward density-wave order in competition with supercon-
ductive pairing in their ground states, may give rise to unconventional superconductivity, a central theme in
condensed matter physics. Partial density-wave gapping of electronic bands at the Fermi surface in such systems
can yield superconductivity at very low carrier density that challenges Bardeen-Cooper-Schrieffer (BCS) theory
since the pairing energy scale may approach or exceed the Fermi energy and render screening of the Coulomb
interaction ineffective. Here we present low-T magnetotransport measurements on the quasi-one-dimensional
conductor Li0.9Mo6O17 showing the metallic state from which superconductivity emerges (Tc � 2 K) to possess
among the lowest known carrier densities, ∼1017 cm−3, and a ratio of Tc to Fermi temperature within the
BCS–Bose-Einstein-condensation crossover regime. A semimetallic state caused by a density-wave-induced
Fermi surface reconstruction with highly anisotropic electron and hole pockets is implied. The degree of
interpocket nesting appears to determine whether the extreme low-density ground state is superconducting or
undergoes additional Fermi surface gapping.
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Electron pairing in the Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity, arising from weak attractive in-
teractions in a degenerate fermionic system, results in a
superconducting transition temperature that is typically orders
of magnitude smaller than the Fermi temperature, Tc/TF ∼
10−4. In the opposite limit of a Bose-Einstein condensate
(BEC), strongly coupled fermions (composite bosons) con-
dense into a coherent quantum state, and typically Tc/TF �
0.1 [1]. A small number of materials having Tc/TF ∼
0.04–0.1 within the BCS-BEC crossover regime include high-
Tc cuprates and heavy-fermion and Fe-based compounds,
superconductors believed to involve spin-mediated pairing
[2–4].

Quasi-one-dimensional (q1D) electron systems may har-
bor unconventional superconductivity within the BCS-BEC
crossover regime when partial density-wave gapping of elec-
tronic bands at the Fermi surface (FS), induced by competing
density-wave order, yields a metallic state with very small
Fermi energy. Li0.9Mo6O17 (lithium purple bronze, LiPB) is
a transition metal oxide with q1D electronic properties. Its
resistivity is metallic at high T , exhibits a minimum at 15 K
� Tmin � 30 K, and rises below Tmin to the superconducting
transition at Tc � 2 K [5–7]. The metallic phase at T � Tmin

exhibits features [8,9] of a Tomonaga-Luttinger liquid (TLL)
[10] with spin-charge separation [11–13]. The mechanisms
for the upturn in the resistivity at T < Tmin and superconduc-
tivity remain a mystery in spite of substantial experimental
efforts over decades. The superconducting state is three di-
mensional with highly anisotropic upper critical fields (Hc2)
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consistent with its normal-state electrical anisotropy [7]. For
field applied along the q1D chains, Hc2 substantially exceeds
the Pauli paramagnetic limit, motivating the proposal [7] that
LiPB is a triplet superconductor [14–18].

The LiPB band structure, studied extensively via photoe-
mission [19] and computation [11,19–22], consistently reveals
two q1D, nearly degenerate electron bands crossing the Fermi
energy, derived from dxy orbital overlap along the zigzag Mo-
O chains (crystallographic b axis). Superconductivity requires
a dimensionality increase, for which the resistivity minimum
is presumed to be the signature. Potential explanations include
charge- or spin-density-wave (CDW or SDW) formation, a
structural change [23,24], and a recent proposal involving the
ordering of long-lived excitons [25,26]. Experiments rule out
CDW [23,27,28] and SDW [29] order (though the latter less
convincingly), and good agreement between the local-density
approximation band structure and photoemission [19] for the
bands near EF is compelling evidence against the occurrence
of a TLL fluctuation-induced suppression of dimensional
crossover [30].

Here we report comprehensive magnetotransport measure-
ments within the most conducting bc plane (field along a)
at T � 0.4 K for both superconducting (SC) and nonsuper-
conducting (non-SC) LiPB crystals, revealing extremely low
carrier densities (n ∼ 1017 cm−3) throughout the range T �
100 K and a rich multicarrier physics. The mobile carrier
densities are among the lowest known for any superconductor
[31,32], placing superconductivity of LiPB in a regime at
the border between BCS and BEC. A density-wave-induced
semimetallic reconstruction of the FS composed of highly
anisotropic electron and hole pockets is implicated at T �
Tmin for both sets of samples. Competition for the ground state
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FIG. 1. (a)–(d) Hall and longitudinal resistivities for two orientations of the current flow J in superconducting crystals. Dashed lines in
(a) and (c) are the initial slopes, RH0 ≡ dρxy/dB|B→0, at low T . (e) RH0 vs T for all crystals (SC, filled symbols; non-SC, open symbols). The
inset compares data from the main panel with data at higher T for crystals from Refs. [35,36] with current parallel to b (filled squares and
inverted triangles) and parallel to c (open squares). (f) Longitudinal magnetoresistance at B = 5 T vs T for all crystals. The inset shows ρb(T )
(squares, left ordinate) and ρc(T ) (circles, right ordinate) at B = 0, 5 T. Solid and dashed curves are guides for the eye.

appears to be controlled by the degree of interpocket nesting,
leading to further density-wave gapping (non-SC samples) or
superconductivity. This nesting is manifested in the strong
scattering and localization of in-chain hole and interchain
electron states on the reconstructed FS at T � Tmin. A sharp
suppression of this scattering in SC samples at T � Tmin

signals delocalization of these states and emergence of quasi-
two-dimensional transport within each of the pockets as a
precursor to superconductive pairing.

Figures 1(a)–1(d) show the field-dependent Hall and longi-
tudinal resistivities for two orientations of the electric current
flow (J‖b and J‖c) in SC crystals at various T . Similar data
for the non-SC crystals are presented in the Supplemental Ma-
terial [33] (Fig. S1). Superconducting transitions are evident
at low fields for temperatures T < Tc [see also the inset of
Fig. 1(e)]; the inferred upper critical fields and range of values
for Tmin [∼18 K (∼30 K) for the SC (non-SC) specimens]
agree with those of prior studies [5–7] (Fig. S2 [33]).

Substantial nonlinearities of the Hall resistivities with
field (especially at the lowest T ) suggest the presence
of charge carriers with opposing signs. The initial slopes,
RH0 ≡ dρxy/dB|B→0 [Fig. 1(e)] yield T → 0 values RH0 �
10−6 (10−5) � m/T for SC (non-SC) samples, correspond-
ing to approximate carrier densities, n = 1/(RH0e) � 6 ×
1018 (6 × 1017) cm−3. However, the data are more aptly de-
scribed by an anisotropic, two-carrier model, for which RH0 =
(nhμ

2
h − neμ

2
e )e/[σb(0)σc(0)] (where σb(0) and σc(0) are the

zero-field conductivities) as discussed further below.
The thermoelectric coefficients tell a similar story of

extremely low carrier density. The field dependencies of

the Nernst signal, Nyx = Ey/|∇Tx|, and thermopower, Sx =
Ex/∇Tx (x, y = b, c), for the SC crystals are shown in
Figs. 2(a)–2(d). Note the different vertical scales (millivolts
versus microvolts) for Ncb (heat current Jq‖b) and Nbc (Jq‖c):
extreme anisotropy, Ncb � 300Nbc, is observed. Sharp max-
ima in the low-field Nernst signals for T < Tc (especially for
Ncb) near the midpoints of the SC transitions are attributed
to a flux-flow Nernst effect [34]. Very similar results for Ncb

were found for a second SC crystal (Fig. S3 [33]). Possible
contaminating signals associated with the Righi-Leduc (ther-
mal Hall) effect are negligible for both orientations (Fig. S4
[33]). In comparison to the Nernst signal, the thermopower
is more isotropic, with a stronger field dependence evident
for Sc. Though the in-chain thermopower Sb is positive, it is
decidedly electronlike at T � 30 K: linear in T with negative
slope, resulting in negative values at T � 300 K [35–37].

Like the Hall resistivity, significant nonlinearity of the
Nernst signals (particularly at low T ) suggests competing
electron and hole contributions. For comparison with the
estimates from RH0, we compute carrier densities from the
B = 5 T, T → 0 limiting values for ν/T (ν = N/B) and
S/T indicated by the dashed lines in Figs. 2(e) and 2(f).
For a broad spectrum of correlated and low-dimensional
metals it has been shown [38] that these quantities scale
well with carrier mobility μ and Fermi temperature TF

as prescribed by the free-electron, Boltzmann theory ex-
pressions for carrier diffusion, ν/T = (π2/3)(kB/e)(μ/TF )
and S/T = (π2/3)(kB/e)(1/TF ). Using μ = 0.2 T−1 (de-
termined from the analysis below) and averaging values
for the two experimental orientations, ν/T � 15 µV/(T K2)
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FIG. 2. (a)–(d) Nernst signal and thermopower for two orientations of the heat current Jq in superconducting crystals. Solid curves are
guides for the eye. (e) and (f) T dependence of ν/T (e) and S/T (f). The vertical arrow in (e) marks a “kink” in ν/T near T � 3 K (see text
and Supplemental Material). The squares in (f) are from a second superconducting b-axis specimen.

(S/T � 12 µV/K2), we find TF � 19 K (23 K). The free-
electron relation EF = kBTF = (h̄2/2m)(3π2n)2/3 thus im-
plies n ≈ 3.5 × 1017 cm−3.

To refine our understanding of the magnetotransport, con-
sider a two-carrier model for the bc plane, with holes and
electrons (densities nh and ne, respectively) for each direc-
tion having different mobilities, μib, μic (i = h, e) [39]. The
model has four carrier densities (holes and electrons for each
direction) but is simplified because for each pair of crystals
(two orientations each, SC and non-SC), we observe ρcb � ρbc

(Figs. 1(a), 1(c), and 1(e) and Supplemental Material, Fig. S1
[33]). This isotropy of the transverse magnetoresistivities
contrasts with the anisotropy of the longitudinal magnetore-
sistivities, �ρ(B)/ρ(0) [Fig. 1(f)]. In such a case, the model
dictates isotropy of hole and electron densities [39]. Switching
to the equivalent and simpler conductivity expressions, the
field dependencies of the coefficients are then given by

σb = σhbb + σebb = nheμhb(
1 + μ2

hB2
) + neeμeb(

1 + μ2
eB2

) ,

σc = σhcc + σecc = nheμhc(
1 + μ2

hB2
) + neeμec(

1 + μ2
eB2

) ,

σbc = σcb = σhbc + σebc = nheμ2
hB

(
1 + μ2

hB2
) − neeμ2

eB
(
1 + μ2

eB2
) ,

where μh = √
μhbμhc and μe = √

μebμec are effective mo-
bilities governing the field dependencies. Examples of the
simultaneous fitting to these equations at various tempera-
tures and the computed partial conductivities are presented in
Figs. S5–S7 [33]. The fitted values of the carrier densities and
mobilities as functions of T are shown in Fig. 3. The analysis
was extended to higher T for SC crystals using data from

prior work [35,36] in the range 25 K � T � 100 K [open and
filled squares in the inset of Fig. 1(e) and in Fig. 1(f)], where
the magnetoresistance and Hall resistivity are quadratic and
linear, respectively, in applied fields B � 5 T, consistent with
prior studies [6,7,40,41]. The same model parameters were
employed to fit the field-dependent thermoelectric coefficients
(Eqs. (S1)–(S3) and Figs. S8 and S9 [33]) to extract partial
coefficients for holes and electrons. The “kink” in the ν/T
curve [arrow in Fig. 2(e)] is found to arise from competi-
tion between Nernst terms (carrier diffusion and the product
of Hall conductivity and thermopower) with opposite sign
(Eq. (S2) and Fig. S9 [33]).

A central outcome of the analysis is that, consistent with
the measured RH0(T ) for multiple specimens and orienta-
tions [inset of Fig. 1(e)], the carrier densities for both SC
and non-SC crystals [Fig. 3(a)] are comparable at T � 10 K,
with ne ∼ 3.5nh � 1017 cm−3 in the former. Thus LiPB is
partially compensated, with extremely low carrier densities
throughout the entire T range. This result is not in conflict
with established TLL physics at higher T for LiPB since
TLL characteristics are independent of carrier density [42].
The single-band expression n = 1/(RH0e) at 100 K yields
n ∼ 3 × 1021 cm−3, a substantial overestimate of the actual
value, and coincidentally comparable to, though opposite in
sign, that expected from the band structure and chemical
valence, 1.9 e/unit cell [13,35]. The rise in RH0 by more
than two orders of magnitude from T ∼ 100 K to T ∼ 10 K
[35,40,41,43] is almost entirely attributable to an increase in
the effective carrier mobilities [dashed curves, Fig. 3(b)] [44].

The small density (or TF ) is incompatible with the large
Fermi wave number kF � π/(2b) determined by photoemis-
sion and density functional theory but is entirely consistent,
as is compensation, with LiPB’s giant Nernst coefficient over
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FIG. 3. Carrier densities (a) and mobilities for SC (b) and non-SC specimens (c) determined by simultaneous fitting to the anisotropic two-
band model (see text and Supplemental Material). Different symbols represent the two crystals for which J‖b and J‖c. Solid and dashed curves
are guides for the eye. (d) Energy band scheme and Fermi plane (adapted from Ref. [19]) assuming a SDW gap-induced reconstruction to a
semimetal with EF = 1.5 meV for both hole and electron bands (see text). Shown in the E = EF plane of (d) and in (e) is the incomplete nesting
of the unreconstructed FS (solid curves: upper sheet, red; lower sheet, blue) and their translations by the nesting vector qSDW = 2kF � π/b
along kb (dashed curves), defining hole (red) and electron (blue) pockets between their respective boundaries. Note the greatly expanded scale
for the kb axis in both (d) and (e). The inset in (e) shows a magnified view of potential nesting for the electron and hole pockets (hatched
regions in main panel): The best nesting is shown by the dashed hole pockets translated along kc by q = ±(π/2c ± δ), with δ ∼ 0.1(π/2c).
The shaded region for the lower translation represents the approximate phase space at T ≈ Tmin for its nesting instability, the width of which
normal to the FS is ∼kBT and at T = 0 is confined to the hot spots (small open circles). (f) Mobilities for SC samples with linear scaling
(curves are guides for the eye).

a broad range of T [∼45 µV/(K2 T) at 100 K] [36]. A re-
construction of the FS (at T > 100 K) into small electron
and hole pockets with highly anisotropic q1D character is
implied. The prospect of spin-density-wave gapping of the FS
for commensurate nesting vector qSDW = 2kF along kb was
considered in Ref. [19]. The nesting is imperfect due to small
warping of the two dxy FS sheets, associated with interchain
(kc) dispersions, and caused by hybridization with the gapped
xz and yz valence and conduction bands via long-range indi-
rect hopping. Gapping throughout the Brillouin zone occurs
for �SDW ≈ 65 meV, though the interaction strength was esti-
mated to be two to three times too small for such an instability
[19]. Assuming a slightly smaller value for �SDW, Fig. 3(d)
depicts a semimetallic reconstruction of the bands [45] and
FS using the gapped (unreconstructed) kb (kc) dispersions
from Ref. [19] (Fig. S10 [33]). Consistent with estimates
above from the thermoelectric coefficients, a small overlap

was assumed with electron and hole Fermi energies being
the same, EF,e = EF,h = 1.5 meV. The occupied FS areas for
electrons and holes within this picture are each ∼3 × 10−4ABZ

[ABZ = (2π )2/bc is the unreconstructed Brillouin zone area],
consistent with the observed carrier densities [Fig. 3(e)]. Note
the greatly expanded scale for the kb axes in Figs. 3(d) and
3(e): The reconstructed pockets are highly anisotropic with
a width along kb of only ∼0.01(π/b). Within mean-field
theory, the SDW transition temperature would be estimated
as TSDW � 2�SDW/(3.5kB) ≈ 420 K, though incomplete nest-
ing [46] can suppress TSDW. Alternatively, it is possible that
rather than gapping large portions of the FS, strong scattering
associated with density-wave fluctuations localizes states in
extended, nearly nested regions of the FS sheets so that the
photoemission and transport observations could be reconciled.

The overlapping electron and hole bands of the semimetal-
lic FS reconstruction have very similar parabolic b-axis
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dispersions (Fig. S10 [33]), and thus comparable values for
μeb and μhb are anticipated. Indeed, for SC crystals at the
lowest T (∼0.4 K) this condition holds true [Fig. 3(b)]. Given
that the unreconstructed band structure does not provide for
in-chain hole conduction, this observation, along with the
low density, provides compelling support for a semimetallic
reconstruction such as that depicted in Figs. 3(d) and 3(e).
However, this low-T electronic structure evolves gradually
with the turning on of strong T -dependent mobilities at T �
Tmin, as more clearly seen on the linear scaling of Fig. 3(f):
μhb and μec (in-chain holes and interchain electrons, lower
panel) increase sharply below Tmin, while μeb and μhc (in-
chain electrons and interchain holes, upper panel) decrease
sharply. This opposing scattering behavior for the two groups
of carriers is also reflected in opposing signs for their partial
Seebeck coefficients (Fig. S8 [33]), as dictated by the scat-
tering term in the Mott expression for diffusion thermopower,
S ∼ d ln σ (E )/dE |EF ∼ d ln μ(E )/dE |EF .

The values for μhb and μec at T � 10–20 K imply incoher-
ence, with mean free paths that are comparable to or smaller
than the interatomic spacing (Fig. S11 [33]) and three or more
orders of magnitude smaller than those for in-chain electrons
and interchain holes. Such highly anisotropic scattering on the
FS pockets is likely associated with density-wave fluctuations
and interpocket nesting for wave vectors along kc [inset of
Fig. 3(e)]. The substantial increase in the SC mobile carrier
densities from Tmin to T � 1 K (where they become constant),
suggests that portions of the FS harbor large densities of
localized states for in-chain holes and interchain electrons, the
delocalization of which occurs gradually with decreasing T .
This behavior may arise because the phase space for nesting
[shaded region for the dashed hole FS; inset of Fig. 3(e)]
declines with the thermal energy and at T = 0 is confined
to hot spots at the intersections of the pockets (small open
circles).

Supporting this picture, the in-chain hole and interchain
electron states with greatest velocities lie within the shaded
(nested) portions of their FSs [inset of Fig. 3(e)], while the
most dispersive in-chain electron and interchain hole states re-
main unaffected or only partially so. Thus the decrease of the
latter mobilities at T < Tmin is a consequence of FS averaging
and an increased weighting, with decreasing T , of delocal-
ized portions of the FS having lower mobilities. Then kBTmin

should correspond to the maximum energy mismatch of
pseudonesting, expressed approximately as (∂E/∂kb)�kb =
h̄vF,b�kb, where vF,b is the in-chain Fermi velocity and �kb

is depicted in the inset of Fig. 3(e). We find h̄vF,b�kb �
0.9 meV (vF,b = 1.8 × 105 m/s (Table S1 [33]), EF,e =
EF,h = 1.5 meV as in Fig. 3(e)) and h̄vF,b�kb � 1.8 meV
(vF,b = 2.3 × 105 m/s, EF,e = 2.0 meV, EF,h = 2.5 meV), in
reasonable accord with kBTmin (1.5 meV).

A competition between further density-wave gapping of
the FS and the occurrence of superconductivity will undoubt-
edly be sensitive to the Fermi energies of the electron and
hole pockets, which presumably differ in SC and non-SC
crystals. Indeed, further density-wave gapping for most of
the FS is implicated in non-SC specimens by the exponential
decline in carrier densities at T � 10 K [Fig. 3(a) and inset
therein], with n = n0 exp(−ε/kBT ) at T � 2 K and averaged
values ε/kB � 8.3 K (0.7 meV), n0 � 1017 cm−3. In spite of

this carrier freeze-out, a residual density of carriers survives
[� (1–3) × 1014 cm−3], and the in-chain conductivity extrap-
olates to a finite value as T → 0 (Fig. S12 [33]): Metallicity is
maintained by a concomitant increase in the electron mobility
μeb [Fig. 3(c)]. The high values for μeb are a consequence
of a small band effective mass for the reconstructed kb dis-
persions (∼0.016me, Table S1 [33]) and the fact that defects
in LiPB (e.g., Li vacancies or O interstitials [35]) are far
from the q1D chains confining electrons and expected to in-
teract with weak Coulomb character [22]. Further confirming
this extreme low-density metallic state is the thermopower,
with limT →0 Sb/T � 150 µV/K [top dashed line, Fig. 2(f)].
This value is among the largest reported for any metal [47],
exceeding those for strongly correlated compounds known
to have substantial fractions of their FSs gapped by novel
ordering [48,49]. The non-SC interchain conductivity extrap-
olates to zero at finite T (Supplemental Material, Fig. S12):
This absence of metallicity is consistent with expectations
that superconductivity is not possible in lower than two
dimensions.

Comparing the non-SC mobilities with those of SC sam-
ples at the lowest T , it is notable that the values of both μeb

and μhc for the former exceed those of the latter by more than
an order of magnitude while the opposite is true for μhb and
μec. This is consistent with better interpocket nesting for the
non-SC samples and a full gapping of these portions of the
FS. The absence of this gapping in SC specimens evidently
sets the stage for superconductive pairing. Tmin effectively
behaves as a dimensional crossover scale, below which the
q1D electron and hole transport along mutually perpendicu-
lar directions gradually evolves to the quasi-two-dimensional
character of the low-T semimetal characterized by mobile
states extending in both crystallographic directions on each
FS pocket.

LiPB’s low carrier density is comparable to those of SrTiO3

(Tc � 0.86 K at n = 5.5 × 1017 cm−3) [31] and pure Bi (Tc =
0.53 mK at n = 3 × 1017 cm−3) [32], and thus its much
higher Tc is remarkable. The interelectron distance at Tc, dee �
1/n1/3 ≈ 22 nm, is comparable to the relevant superconduct-
ing coherence lengths [7], ξb = 30 nm and ξc = 10 nm, i.e.,
Cooper pairs do not substantially overlap. This and the ratio of
critical temperature to effective Fermi temperature, Tc/TF �
0.1, place LiPB’s parameters near the border between BCS su-
perconductivity and BEC [50,51]. The characteristics of LiPB
revealed in this Research Letter have similarities to those of
Fe-based superconductors [4] and elevate the prospect that un-
conventional physics is at play, e.g., spin-fluctuation-induced
interpocket pairing or pairing without phase coherence at
T > Tc [52]. Regarding the latter, the coexistence of pairs
with single-particle excitations is evidenced in LiPB [53]
for specimens with partial superconducting transitions in-
termediate between the SC and non-SC crystals reported
here.

This material is based on work supported by the U.S. DOE,
Office of BES, Materials Sciences and Engineering Division,
under Grants No. DE-SC0008607 (University of Miami) and
No. DE-SC0016156 (Montana State University). J.L.C. ac-
knowledges helpful comments from J. W. Allen and O. K.
Andersen.
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“Superconductivity at carrier density 1017cm-3 in quasi-one-dimensional Li0.9Mo6O17”

J. L. Cohn, C. A. M. dos Santos, and J. J. Neumeier

Experimental methods

Li0.9Mo6O17 crystal growth [23, 54] and crystallographic
and stoichiometric studies [24, 35] on similarly-grown crys-
tals have been reported previously. It is common to find
superconducting (SC) and non-superconducting (non-SC)
single crystals in the same growth vessel, indicating slight
stoichiometric variations that occur naturally during the
growth process. All measurements were performed with
applied field normal to the bc-plane (we ignore the small
angle ∼ 0.6◦ between field and a axis of the monoclinic unit
cell).

Specimens were oriented by x-ray diffraction and pol-
ished into thin parallelepipeds with typical dimensions 0.05-
0.15 mm along a and 0.5-2 mm in the b-c plane. A six-
contact geometry using sputter-deposited Au contacts and
two-thermometer, one-heater method was employed for the
electric and thermoelectric measurements. The polished,
cut, and oriented crystals were cleaned ultrasonically prior
to sputter deposition of gold contacts on both sides of the
crystal. This ensured some gold deposition on the thin side
edges as well, thereby creating ring-like contacts with short-
ing along the a axis. Gold wires (0.001" diameter) were
bonded to the contacts with silver epoxy. A matched pair
of RuO sensors, mounted on thin OFC Cu plates were sus-
pended in vacuum and thermally linked to the specimens
with 0.005"-diameter gold wires, the ends of which were
bonded to the Cu plates and to the specimen (along the
crystal width atop the gold longitudinal voltage contacts)
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Fig. S1. Hall and longitudinal resistivities for two orientations of
the current flow (J‖b and J‖c) in non-superconducting crystals.
Solid curves are guides.

with silver epoxy.
During field sweeps the field was stabilized at each setting.

The dc longitudinal and Hall resistivities were determined
with both current and field reversal. With the heater en-
ergized, the thermopower and Nernst voltages were deter-
mined from the symmetric and antisymmetric combinations
of the longitudinal and transverse voltages, respectively,
measured for both field orientations.

Additional data

Figure S1 shows the field-dependent Hall and longitu-
dinal resistivities for two orientations of the current flow
(J‖b and J‖c) for non-superconducting crystals at various
temperatures. A decrease in the longitudinal resistivity (but
absence of a zero-resistance state) evident at the lowest
temperatures and fields, suggests partial, inhomogeneous
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Fig. S2. (a) Upper critical fields Hc2(T ) for three superconducting
crystals [same filled symbols as in Fig. 1 (e), (f)] compared with
data from Ref. 7 (open symbols). (b) Resistivity data showing
values for Tmin (arrows) for the superconducting (solid curves) and
non-superconducting (dashed curves) crystals in the main text for
current along the b and c axes (squares–left ordinate, circles–right
ordinate, respectively). The ρb data for the non-superconducting
crystal are divided by 4.
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superconductivity, similar to that observed in prior studies
[53].

Figure S2 (a) shows the upper critical fields (determined
using a 50% resistance criterion) for three superconduct-
ing specimens (filled symbols) in comparison to data from
Mercure et al. [7] for this field orientation. The zero-field re-
sistivities for the superconducting and non-superconducting
crystals are shown in Fig. S2 (b) where values for Tmin are
seen to be ∼ 18 K and 30 K, respectively.

Figure S3 shows the field dependence of the Nernst signal
(upper panel) and Hall resistivity (lower panel) for a second
superconducting crystal with electric and heat currents along
the Mo-O chains (crystallographic b axis).

Possible contamination of thermoelectric signals due to a
Righi-Leduc transverse temperature difference

The Nernst expressions (derived in the next section) as-
sume the presence of no thermal gradients other than those
along the primary heat flow directions. A slight misalign-
ment of the crystallographic and body axes can mix the
signals from the orthogonal crystallographic axes, but these
cross-contaminations are eliminated upon computing the
appropriate field-symmetrized and antisymmetrized com-
binations. A potential intrinsic source of a transverse tem-
perature gradient is the Righi-Leduc (thermal Hall) effect
[41]. For a specimen with primary heat flow along the c
axis, a Righi-Leduc-induced ∆Tb can generate two contam-
inating signals: (1) a transverse thermopower voltage in
response to ∆Tb, Vbc = Sbb∆Tb and (2) a Nernst voltage
along the primary thermal gradient, Vcc = (w/`)Ncb∆Tb (w
is the transverse specimen dimension and ` the longitudinal

distance between electrical contacts). As the Righi-Leduc
∆Tb is an odd function of the applied field, signal (1) will
be odd in field and potentially contaminate the transverse
Nernst signal (Nbc) induced by the fixed primary∆Tc . Since
the Nernst voltage is itself odd in field, signal (2) will be
even in field and potentially contaminate the thermopower
(Scc) signal.

The Righi-Leduc-induced temperature difference is given
by,

∆Tb =
�w
`

� κbc

κbb
∆Tc .

Substituting this in the expression for the potential contami-
nating signal Vbc above and adding to it the expected Nernst
signal from the primary gradient gives Vbc ∝ Sbb(κbc/κbb)+
Nbc . The results from Ref. 41 suggest κbc/κbb ¦ 0.5 at
T = 25 K. But it is clear from Fig. 2 (c) that Sbb is only
weakly field dependent in the normal state and remains fi-
nite at B = 0 – the contaminating signal would introduce
a step-like change in sign in the measured Vbc if it is of
significant magnitude in comparison to the Nernst term. Fig-
ure S4 shows the raw transverse thermoelectric signal for
this configuration at T = 9.78 K and 2.00 K – no such discon-
tinuities are observed and the signals pass smoothly through
the origin at B = 0. For comparison we used the Sbb data
at T = 12 K to simulate the effect of a contaminating signal
on the T = 9.78 K Nernst data, assuming a much smaller
κbc/κbb = 0.03 (×’s in Fig. S4). This yields a ∆Tb that is
∼ 1% of the primary ∆Tc for this specimen, i.e. ® 1− 2 mK
throughout the T range. Accordingly, we can also conclude
that potential contaminating signal (2) above is negligible in
comparison to the longitudinal thermopower voltage. These
arguments also apply for the other orientation (primary heat
flow along the b axis) where the Nernst signal is substantially
larger and the relevant thermopower (Scc) for contaminating
signal (1) is of comparable magnitude.
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shown in Fig. 2 (b)]. Also shown (×) are the Nernst data at 9.78 K
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thermopower driven by a hypothetical Righi-Leduc transverse ∆Tb
as discussed in the text.
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The absence of a significant transverse temperature differ-
ence in our measurements is not in conflict with the results
of Ref. 41 given that the Au wire heat links spanning the crys-
tal width on the longitudinal voltage contacts in the present
experiments will tend to suppress a transverse temperature
difference across the Hall contacts midway between them.
Supporting this hypothesis, we estimate that at T = 2 K the
thermal conductance of the two Au mounting wires (taking
κAu = 150 W/mK) is ∼ 7 times that of the specimen (using
κLiPB = 10 W/mK from our direct measurements) along its
transverse dimension.

Anisotropic, two-carrier transport model

As noted in the main text, we employed a two-carrier
transport model with anisotropic mobilities [39] to describe
transport in the b-c plane transverse to the applied mag-
netic field. The longitudinal and transverse conductivities

as functions of applied field are then given by,

σb = σhbb +σebb =
nheµhb

�

1+µ2
hB2

� +
neeµeb

�

1+µ2
e B2

�

σc = σhcc +σecc =
nheµhc

�

1+µ2
hB2

� +
neeµec

�

1+µ2
e B2

�

σbc = σcb = σhbc +σebc =
nheµ2

hB
�

1+µ2
hB2

� −
neeµ

2
e B

�

1+µ2
e B2

� ,

where µh =
p
µhbµhc and µe =

p
µebµec are the effective

mobilities governing the field dependencies.
The thermopowers are sums of the partial hole and elec-

tron thermopowers (diagonal components of the Seebeck
tensor S

↔
), weighted by their conductivities:

Sb ≡ Sbb =
�

σhbb

σbb

�

Shbb +
�

σebb

σb

�

Sebb (S1)

Sc ≡ Scc =
�

σhcc

σcc

�

Shcc +
�

σecc

σc

�

Secc

The Nernst signal is given by [38],

Ncb ≡
Ec

|∇Tb|
=
σbbαcb −σcbαbb

σbbσcc −σbcσcb

Nbc ≡
Eb

|∇Tc |
=
σccαbc −σbcαcc

σbbσcc −σbcσcb
,

where α↔= σ↔·S
↔

is the Peltier conductivity tensor. Expressing
α
↔ in terms of σ↔ and S

↔
, and dropping small terms of second

order in the Hall conductivities yields:

Ncb =
σhccShcb +σeccSecb

σcc
+
(σebbσhcb −σhbbσecb) (Shbb − Sebb)

σbbσcc
(S2)

Nbc =
σhbbShbc +σebbSebc

σbb
+
(σeccσhbc −σhccσebc) (Shcc − Secc)

σbbσcc

The first terms reflect carrier diffusion, with the weighting
of hole and electron off-diagonal thermopowers by their
respective partial conductivities. The second terms reflect
the contribution from the Lorentz-force deflection of longitu-
dinal electron and hole currents of opposite polarity, driven
by the Seebeck electric field (Jnet = 0 for the open circuit
conditions). The diagonal and off-diagonal components of
the thermopower tensor have field dependencies like those

of the conductivity:

Shbb =
S0

hbb
�

1+µ2
hB2

� , Shcc =
S0

hcc
�

1+µ2
hB2

� (S3)

Shbc =
S0

hbcµhB
�

1+µ2
hB2

� , Shcb =
S0

hcbµhB
�

1+µ2
hB2

�

where S0
hbb, S0

hcc , S0
hbc , and S0

hcb are constants and similar
expressions define the B dependencies for Sebb, Secc , Sebc ,
and Secb.
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Fig. S5. Hall and longitudinal conductivities for superconducting
specimens. Solid curves are generated by simultaneous fitting to
the anisotropic two-carrier model with parameters shown in Fig. 3.
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Fig. S6. Hall and longitudinal conductivities for non-
superconducting specimens. Solid curves are generated by simulta-
neous fitting to the anisotropic two-carrier model with parameters
shown in Fig. 3.

Simultaneous fitting of the Hall and longitudinal
conductivities to the anisotropic two-carrier model

Fitting the model to the conductivities rather than to the
more complex resistivity expressions [39] gave more reli-
able convergence of the fit parameters (the separate terms
in the Hall conductivity each contain only two fit parame-
ters). The Hall and longitudinal conductivities were com-
puted from the measured tensor components of the resis-
tivities, e.g., σbc = ρbc/(ρbbρcc + ρbcρcb) ≈ ρbc/(ρbbρcc)
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Fig. S7. Partial conductivities at B = 5 T computed from the
anisotropic two-carrier model fitting parameters from Fig 3. Solid
curves are guides.

and σbb = 1/ρbb. The Hall and longitudinal conductivities
for a particular current orientation were employed along
with the longitudinal conductivity for the other orientation
at the same temperature or interpolations in T on the data
sets for the other orientation when measurements at the
same temperature were unavailable. In practice the four
independent fit parameters employed were µhb, µeb, and
the effective mobilities µh =

p
µhbµhc and µe =

p
µebµec ,

with µhc and µec computed from these. The standard error
in all fitting parameters was 15-20% throughout the temper-
ature range. The quality of the fitting (Figs. S5 and S6) is
generally very good, though the fits to σcc(B) at T > Tc are
poorer, suggesting a modest field dependence of the c-axis
hole mobility, µhc .

The four partial conductivities for both SC and non-SC
crystals at B = 5 T, computed from the fitting parameters in
Fig. 3, are shown in Fig. S7.

Fitting of the thermopower and Nernst field dependencies

Using the carrier densities and mobilities determined from
fitting to the magnetoconductivities, we first fitted the ther-
mopower versus field data, treating the two partial ther-
mopowers (TEPs) for each direction as the only adjustable
parameters (Eqs. S1, S3). These partial TEPs were then
employed in similar fittings of the Nernst signals versus field,
introducing two additional partial (off-diagonal) TEPs for
each direction as adjustable parameters (Eq. S2). We re-
stricted the analysis to T ® 3 K since the smaller partial
conductivities (in-chain holes, interchain electrons) become
too small (® 1% of the total conductivity) at higher T to
give reliable results for their partial TEPs. The fitting results
are represented as dashed curves in Fig. S8 (a)-(d). The
resulting T -dependent partial TEPs at B = 5 T are shown
in Fig. S8 (e). They are linear in T at T ≤ 1.3 K (dashed
lines), but with opposite signs for the two groups of carriers
(in-chain electrons, interchain holes) and (in-chain holes,
interchain electrons), and with limT→0 |S/T | approximately
2.5 times larger for the latter. The opposing signs of the
partial TEPs are attributable to the opposing signs of the
scattering terms, dµ/dE∝ dµ/dT , in the Mott expression
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Fig. S8. (a)-(d) Nernst signal and thermopower data for SC samples reproduced from Fig. 2 with examples of fits (dashed curves) to the
anisotropic two-carrier model at three temperatures for each orientation (Eqs. S1, S3). (e) B = 5T partial thermopowers determined from
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for the two groups of carriers [Fig. 3 (b)]:

S = −
π2

3
kB

e
kB T

�

1
n(E)

dn(E)
dE

+
1
µ(E)

dµ(E)
dE

�

E=EF

.

These partial (diagonal) TEPs were then employed in
the fitting of the field-dependent Nernst signals to Eq. S2.
Figure S9 (a) shows the best fits (solid curves) for Ncb (Jq‖b)
at T = 1.92 K, 0.52 K, along with the first (dashed) and

second (dash-dotted) terms in Eq. S2 of which these fits
are comprised. The positive carrier diffusion terms in Ncb
are opposed by a negative contribution from the product of
the Hall conductivity and thermopower (Eq. S2). As noted
in the main text and arrow in Fig. 2 (e), this leads to the
distinct “kink” in the T dependence of ν/T for B = 5 T;
the separate terms from the fitting are shown in Fig. S9 (b).
The hole and electron partial (off-diagonal) TEPs from the
fittings are shown in Fig. S9 (c).
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Fig. S9. (a) Ncb [from Fig. 2 (a) and Fig. S8 (a)] at T = 1.92 K, 0.52 K along with best fits (solid curves) to Eq. S2 and the separate
contributions from its first (dashed curves) and second (dash-dotted curves) terms. (b) T dependence of ν/T at B = 5 T [from Fig. 2 (e)
for Jq‖b] and the separate terms from Eq. S2 based on the fitting analysis. (c) the partial off-diagonal TEPs determined from the fittings.
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Band dispersions from photoemission and band theory,
effective masses, Fermi velocities, and mean-free paths

Figure S10 (a) shows the calculated Fermi surface (FS)
from Ref. 19 constrained by angle-resolved photoemission
spectroscopy (ARPES). As mentioned in the main text, rather
unique kc dispersions caused by hybridization through long-
range indirect hopping to the gapped xz and yz valence and
conduction bands are responsible for the small Fermi surface
(FS) warping (appearing as “fingers” in the upper sheet
(red) near kcc/2π= 0.25,0.75 and the bulge in the lower
sheet (blue) at kcc/2π = 0.5). These dispersions and the
associated FS warping are sensitive to the position of EF and
thus to the Li stoichiometry assumed in the calculations (see,
e.g., Fig. 13 in Ref. 19). The kc dispersions at kb b/2π = 0.25
shown in Fig. S10 (b) were employed in generating the
approximate reconstructed FS of Fig. 3 (d) and (e), and
thus do not incorporate changes in the dispersions with
energy. The spin-density wave gapped bands (and their spin
splitting) [Fig. S10 (c)] are depicted for ∆SDW ' 65 meV
[19]. We see that the hole pockets form from the lower of
the gapped upper sheet (red) and the electron pocket from
the upper of the gapped lower sheet (blue).

Effective masses, (m∗)−1 = (1/ħh2)∂ 2E/∂ k2 and Fermi
velocities, vF = (1/ħh)∂ E/∂ k, were computed (Table S1) for
electrons (e) and holes (h) along kc at kcc/2π= 0.25 and
kcc/2π = 0.5 for the upper (red) and lower (blue) bands,

respectively, of Fig. S10 (b), and along kb at the top (red)
and bottom (blue) of the bands in Fig. S10 (c).

Table S1. Effective masses and Fermi velocities computed from
Fig. S10.

carrier type m∗(me) vF (105m/s)
in-chain electrons (eb) 0.016 1.80
interchain holes (hc) 0.97 0.20
in-chain holes (hb) 0.016 1.80

interchain electrons (ec) 2.70 0.14

Mean-free paths for each carrier group for SC samples
were computed (Fig. S11) from the mobilities and param-
eters in Table S1: (1) ` = (µ/e)m∗vF appropriate for T <
TF ∼ 18 K, and (2) ` = (µ/e)m∗vth where vth =

p

2kB T/m∗
is the thermal velocity appropriate to nondegenerate elec-
trons (at T > TF ).

T → 0 conductivities of the non-superconducting specimens

Figure S12 shows the low-T in-chain and interchain con-
ductivities at B = 0 and B = 5 T for the non-superconducting
specimens. The interchain conductivities extrapolate to zero
at finite T (dashed lines), indicating the absence of metallic-
ity.
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Fig. S10. (a) The unreconstructed Fermi surface from Ref. 19 showing the upper (red) and lower (blue) sheets (note the greatly expanded
scale for the kb axis). (b) kc dispersions for the two FS sheets at kb b/2π = 0.25 (energy is referenced to the center of the band gap between
dxz and dyz bands). (c) Unreconstructed kb dispersions for the upper (red) and lower (blue) FS sheets with their qSDW = 2kF translations
(dashed curves) and the spin-split gapped bands (solid curves) for ∆SDW ' 65 meV, adjusted to produce an average EF = 1.5 meV for the
majority and minority spin bands as assumed in Fig. 3 (d).
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