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Spin Seebeck effect in Cu2OSeO3: Test of bulk magnon spin current theory
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We report measurements of the low-temperature (T � 15 K) longitudinal spin Seebeck coefficient (SLSSE ) in
bulk single crystals of the helimagnetic insulator Cu2OSeO3 with Pt contacts. Simultaneous measurement of
both SLSSE and the magnon thermal conductivity (κm) demonstrates their correlation and allows for quantitative
and favorable comparison to bulk magnon spin current theory.
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Magnon transport and energy exchange between magnons
and phonons are central to the growing fields of spin
caloritronics [1] and magnon spintronics [2]. Crucial to po-
tential applications is the conversion of thermally driven spin
currents in a magnetic insulator to an electrical signal via the
inverse spin Hall effect in a heavy-metal thin film in interfacial
contact—the spin Seebeck effect. Considerable experimental
and theoretical development has focused on studies of Pt con-
tacts to the insulating ferrimagnet yttrium-iron garnet (YIG).

Magnon spin current theory for the bulk spin Seebeck
effect [3–5] implies a direct relationship between the longi-
tudinal spin Seebeck coefficient (SLSSE ) and magnon thermal
conductivity (κm). Quantitative tests of this relationship have
not been possible in any material because κm is not typically
large enough or easily separable from the lattice thermal
conductivity. Though κm has been determined for YIG at low
temperature in applied magnetic field [6–8], it is not clearly
correlated with SLSSE (e.g., their maxima appear to occur at
very different temperatures [9,10]).

Recent studies [11] demonstrated that Cu2OSeO3, a heli-
magnetic insulator with TC = 58 K, harbors the largest known
κm for any ferro- or ferrimagnetic insulator, with a max-
imum κm ∼ 60–80 W/mK at T � 5–6 K. Here we report
on measurements of SLSSE in 10-nm Pt/bulk single-crystal
Cu2OSeO3 heterostructures with which κm, measured simulta-
neously, is well correlated. The data, which include interfacial
spin-mixing conductances varying by more than an order of
magnitude, are in quantitative agreement with the predictions
of bulk spin current theory.

Cu2OSeO3 comprises a three-dimensional distorted py-
rochlore (approximately fcc) lattice of corner-sharing Cu
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tetrahedra [12,13]. Strong magnetic interactions within tetra-
hedra lead to a 3-up–1-down, spin S = 1 magnetic state
[14,15] with weaker interactions between tetrahedra leading
to their ferromagnetic ordering [16,17] below TC � 58 K. At
low temperatures [18] the low-field state [inset, Fig. 1(a)]
includes multiple helical (H) domains (aligned along the 〈100〉
easy-axis directions) wherein atomic spins rotate within a
plane perpendicular to the helical axis with a wavelength λh �
62 nm. At H � 10–25 mT (depending on field orientation) the
helices of individual domains rotate along the field to form
a single-domain, conical phase (C). For H � 50–75 mT the
ferrimagnetic, fully polarized (FP) state emerges.

Phase pure, single crystals of Cu2OSeO3 were grown
by chemical vapor transport as described elsewhere [11,19].
Specimens were cut from single-crystal ingots, oriented by
x-ray diffraction, and polished into thin parallelepipeds. A
two-thermometer, one-heater method was employed to mea-
sure the spin Seebeck effect (using 25-μm-diam. Au wires)
and thermal conductivity simultaneously. A sputtered Pt film
(10 nm thick) was deposited onto the heater end of the crystal
and isolated from the heater with varnish. Further details
on the measurements, crystal polishing/etching [20–21], and
properties of the Pt films are discussed in the Supplemental
Material [22].

We focus in this work on data for three specimens, all
with heat flow along the [111] direction and magnetic field
along [11̄0] [inset, Fig. 1(a)]. Crystal 1 is the same crystal
(5 × 1.10 × 0.26 mm3) for which thermal conductivity data
were reported in Ref. [11]. This crystal was subsequently cut,
polished (new cross-sectional area A = 0.86 × 0.20 mm2),
prepared with a fresh Pt film, and remeasured. This second
data set is the primary focus of the narrative since it is most
extensive and because its SSE signal was a factor of 4–5
larger than during the first experiment. The two specimens are
distinguished by their transverse dimensions, �0 = 0.60 mm
and 0.47 mm, respectively, where �0 ≡ 2

√
A/π . A second

crystal with �0 = 0.31 mm (A = 0.70 × 0.11 mm2; crystal 5
from Ref. [11]) was also studied. Data for the �0 = 0.60 mm
and �0 = 0.31 mm specimens are included in Fig. 3 and more
extensive data in Supplemental Material Figs. S4 and S5 [22].
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FIG. 1. (a) From top to bottom: Spin Seebeck voltage (for heater on and off), average temperature, and thermal conductivity vs applied field
at Tavg = 4.79 K. Left inset: Magnetic phase diagram (adapted from Ref. [18]); right inset: Orientation of heat flow and fields. (b) SSE voltage
vs �T at 6.67 K, (c) zero-field κ (T ), (d) SSE coefficient, and (e) magnon thermal conductivity vs applied field for various temperatures. Error
bars are discussed in the text and in Ref. [11]. The shading in (a), (d), and (e) distinguishes the conical (C) spin phase from helical (H) and
fully polarized (FP) phases at lower and higher field, respectively.

Given the high thermal conductivity of Cu2OSeO3 [11] and
the desire to maximize length along the inverse spin Hall field
([112]), long, thin parallelepiped specimens were necessary,
leading to large demagnetization factors (N ∼ 0.75) and some
nonuniformity of the applied field; we report external field
values here. Extensive prior measurements of M(H ) and κ (H )
on crystals [11,23] with small N reveal consistent, coincident
signatures of the spin-phase transitions that are employed here
to identify the phase boundaries from κ (H ) data.

Prior work demonstrates that field-dependent changes in
κ are entirely magnonic [11,23]. Separation of κL and κm is
possible for T � 1.2 K where the high-field condition EH �
kBT is met (EH = gμBH , the Zeeman energy) and thus spin-
wave excitations are depopulated (gapped). The mean free
paths for both phonons and magnons are comparable to �0

at T � 2 K. At higher T where field suppression of κm is
incomplete, Callaway model fitting is employed to estimate
κL, with κm computed by subtraction [11,22].

Figure 1(a) shows the field dependence of, from top to
bottom, the Pt film voltage (with a constant offset volt-
age subtracted), average specimen temperature, and ther-
mal conductivity at Tavg = 4.79 K. The null Pt voltage dur-
ing the same sweep with the heater off is also shown.
Figure 1(b) confirms linearity in �T of the antisymmetrized
spin Seebeck voltage, VLSSE = [VPt(H ) − VPt(−H )]/2, and
Fig. 1(c) shows the zero-field κ (T ). κ (H ) exhibits a step-
like increase at the H-C spin-phase transition, a plateau
within the C phase, and another steplike increase at the C-
FP phase boundary. Similar features for various orientations

of heat flow and applied field have been reported in prior
studies [11,23].

Figure 1(d) shows the longitudinal spin Seebeck coeffi-
cient as a function of field at selected temperatures, SLSSE =
(VLSSE/�T )(l/w), where l is the distance between ther-
mometers along the heat flow and w is the length of the Pt
film (approximately the specimen width). Figure 1(e) shows
the magnon thermal conductivity computed by subtracting a
field-independent κL. The error bars reflect uncertainties in
estimating κL from the model fitting and are largest at T ∼ 7 K
where κ (T ) has its maximum [11,22]. Similar SLSSE (H ) and
κm(H ) data for the other specimens are presented in Figs. S4
and S5 [22].

SLSSE (H ) exhibits a small maximum at fields below the H-
C phase transition, presumably associated with partial reorien-
tation of the three 〈100〉-oriented helical domains, established
in zero-field cooling. A sharp increase in SLSSE (H ) character-
izes the transition to the conical phase, following the increase
in κm(H ). At T � 6 K, SLSSE (H ) increases smoothly through
the C-FP transition, and saturates or declines in magnitude
within the FP phase. For lower T an inflection appears at the
C-FP transition and a steplike decrease emerges, becoming
more prominent at the lowest T . This latter feature coincides
with a steplike decrease in κm(H ) (see data for 3.03 and
2.00 K), and thus can be attributed to the effects of a larger
spin gap (estimated in the analysis below as � ∼ 0.3 meV
[22]) within the FP phase (the spin gap in the conical phase is
quite small [24], ∼12 μeV). A fraction of the thermal magnons
thus become gapped as the field increases through the C-FP
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FIG. 2. (a) κm(T ) and SLSSE (T ) in the fully polarized phase at
μ0H = 0.45 T. Error bars for κm are described in the text, and for
SLSSE are dictated by uncertainty in the geometric factor (20%). The
solid curve is computed from Eq. (1) and the dashed curve from
Eq. (2) with τth = (τ−1

3N + τ−1
mp + τ−1

3U )−1 (see text). (b) Thermally
averaged scattering lengths computed from the model of Ref. [30]
(see also the Supplemental Material [22]).

transition, effectively removing their contribution to κm. That
the effects of the spin gap opening are evidenced in SLSSE

at higher T than for κm suggests that subthermal magnons
contribute some weight to the spin Seebeck effect, as has been
proposed to understand the field-induced suppression of the
SSE in YIG [9,25,26].

The most significant observation from Figs. 1(d) and 1(e)
and the principal result of this work, is the clear correspon-
dence between κm and SLSSE ; Fig. 2(a) illustrates this corre-
spondence in T at fixed field μ0H = 0.45 T, within the FP
phase where SLSSE is near its maximum value. As a first test
of theory, we demonstrate that the same magnon relaxation
rate, employed in prior work to model κm(T ) for crystal 1 and
other similar crystals [11], also describes SLSSE (T ).

Inelastic neutron scattering studies [27] indicate a single
spin-wave branch relevant to magnon transport at low T in

TABLE I. Magnon scattering and spin Seebeck parameters.

Specimen �0 (mm) c (ppm) �m (mm) RN (�) g↑↓
eff (1015 m−2)

Crystal 1 0.60 22 0.30 467 2.45
” 0.47 22 0.21 120 39.3
Crystal 2 0.31 44 0.18 293 1.27

Cu2OSeO3 that is well described by an isotropic dispersion
[28], E = � + gμBH + h̄ωZB[1 − cos (πq)], with h̄ωZB =
4.55 meV and q = k/km the reduced wave number (km is the
maximum wave number). The magnon thermal conductivity
and spin Seebeck coefficient from Boltzmann theory can be
written as [3–5]

κm = kBk3
m

6π2
τRB21, (1)

SLSSE = RNλN
2e

h̄
θSH (τmτth)1/2 B11C2

(B10C1)1/2
Fg↑↓

eff , (2)

where Bi j and Ck are the integrals,

Bi j =
∫ 1

0
dq q2v2

m

xi(ex ) j

(ex − 1)1+ j
, Ck =

∫ 1

0
dq q2 xk

(ex − 1)
,

F = h̄γ kBk3
m

4πMSπ2
√

3
,

vm = (1/h̄)dE/dk is the magnon velocity; x = E/kBT ;
RN , λN = 3.7 nm and θSH = 0.05 are the Pt film resistance,
spin-diffusion length, and spin Hall angle [5]; γ = 1.82 ×
1011 T−1 s−1 is the gyromagnetic ratio [29]; and 4πMS �
1.15 × 105 A/m is the saturation magnetization [18]. The
integrals are performed over a spherical Brillouin zone with
(4/3)πk3

m = (2π/a)3. We employ thermally averaged scatter-
ing times for which the momentum dependence has already
been integrated out.

The transport relaxation rate (τ−1
R ) incorporates magnon-

magnon umklapp (3U , 4U ), magnon-impurity (i), and
magnon-boundary (b) scattering, τ−1

R = τ−1
3U + τ−1

4U + τ−1
i +

τ−1
b , computed for an isotropic Heisenberg model with

quadratic magnon dispersion [30]. The expressions rely on
four parameters, two of which are fixed by the value of
the lattice constant and TC [11,22]. The strength of impurity
and boundary terms are set by the nonmagnetic impurity
concentration (c) and magnetic domain size �m � �0 (τb =
�m/〈vm〉, with 〈vm〉 the momentum-averaged magnon velocity
[22]). The latter, employed here as a fitting parameter, was
determined directly in Ref. [11] from the κm ∝ T 2 behavior
observed within the C phase at low T as ∼0.30 mm for the
specimen with �0 = 0.60 mm. The solid curve in Fig. 2(a)
demonstrates good agreement with κm using the T -dependent
scattering lengths (� j = 〈vm〉τ j) shown in Fig. 2(b). Similar
quality fitting curves for the other specimens are shown in
Figs. S4 and S5 [22]; Table I summarizes the parameters.

Two relaxation times are distinguished in Eq. (2) for the
SSE coefficient, characterizing scattering that conserves (does
not conserve) magnon number, τm (τth) [31]; the magnon
diffusion length and the SSE signal are proportional to√

τmτth, where τm � τth. We take τm = τR, as τR is domi-
nated by magnon-conserving processes given that τ3U � τ4U
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FIG. 3. Correlation between SLSSE and κm in the fully polarized
phase (μ0H = 0.45 T) for all three specimens on linear (a) and
power-law (b) scaling. Data for crystal 1 with �0 = 0.60 mm and
crystal 2 (�0 = 0.31 mm) have been rescaled by their values of RN g↑↓

eff

(Table I) to match that of crystal 1 with �0 = 0.47 mm as described
in the text. The dashed line in (a) is a guide and in (b) a linear
least-squares fit. The inset shows the quality of the power-law fit to
be maximized for n = 1.15.

[Fig. 2(b)]. Note that magnon-phonon interactions (character-
ized by τmp), which do not conserve magnon number (two-
magnon, one-phonon interactions are predominant), are weak
in the low-T regime relevant here [30,32] and play little
role in κm provided there is sufficient coupling to ensure
energy from the heater (coupling only to phonons) enters
the magnon system. The criterion for this [33], τmp � �0/vph

(vph � 2 km/s is the phonon velocity [11,22]), is satisfied [11]
using τmp estimated from the intrinsic ferromagnetic reso-
nance linewidth [29] [Fig. 2(b)]. With τm = τR fixed by fitting
to κm(T ) and τ−1

th = τ−1
mp + τ−1

3N + τ−1
3U , g↑↓

eff was adjusted to
produce good agreement with SLSSE [dashed curve in Fig. 2(a)
and Figs. S4 and S5 for the other specimens].

The T dependence arising from the relaxation times for
SLSSE differs from that for κm by the factor (τth/τR)1/2,
which is weakly T dependent over the investigated range
[Fig. S6(a)]. This observation motivates a more fundamental
test of the theory, independent of the relaxation times—
Eqs. (1) and (2) predict the two transport coefficients to be
directly related through their integral expressions. A sublinear
relationship between SLSSE and κm for all specimens emerges
when the spin Seebeck coefficients are rescaled by plotting
βSLSSE against κm [Fig. 3(a)], where β is the ratio of RN g↑↓

eff
for the �0 = 0.47 mm specimen to that for the others: β =
4.1 (12.7) for �0 = 0.60 (0.31) mm specimens. Figure 3(b)
demonstrates that a power-law relation, (SLSSE )n ∝ κm, pro-
vides a good description of the data with n = 1.15 providing
the best fit [inset, Fig. 3(b)]. In Fig. S6(b) we demonstrate
that the integrals follow the relationship B11C2/(B10C1)1/2 ∝
(B21)0.852 over most of the T range, yielding n = (1/0.852) �
1.17 in excellent agreement with the data.

In summary, the unprecedentedly large magnon thermal
conductivity of Cu2OSeO3 and simultaneous measurement of
spin Seebeck coefficient have allowed for new quantitative
tests affirming bulk magnon spin current theory. These results
highlight this compound as a model system for the study of
magnon interactions and their role in the transport of spin and
heat.
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Spin-Seebeck E�ect in Cu2OSeO3:

Test of Bulk Magnon Spin-Current Theory

A. Akopyan, N. Prasai, B. A. Trump, G. G. Marcus, T. M. McQueen, and J. L. Cohn

PT FILM DEPOSITION AND PROPERTIES

Following the work of Aqeel et al. [20], Cu2OSeO3 crystal faces were prepared for Pt deposition by polishing with
a sequence of increasingly �ne abrasive pads: 5 µm, 1 µm, 0.3 µm. Prior to placement in the vacuum chamber for
sputter deposition of Pt through a shadow mask, polished surfaces were subjected to a short-duration Piranha etch (a
3:1 ratio of H2SO4 with H2O2), established as improving the Pt/yttrium-iron-garnet (YIG) interface for spin-pumping
applications [21], followed by deionized water rinse. The etching time for the three specimens of this work were: 10 s
(`0 = 0.47 mm), 45 s (`0 = 0.60 mm), 60 s (`0 = 0.31 mm). Subsequent to deposition, the �lms/crystals were annealed
in air at 300◦C for 20-30 minutes during which their resistances initially decreased and eventually stabilized.

Given that bulk Pt is close to a magnetic instability and ultrathin Pt �lms deposited on YIG substrates have
been shown to develop magnetism [34, 35] (e.g. in a dead layer near the interface), it is important to characterize
all Pt �lms grown on Cu2OSeO3 to establish whether there could be extrinsic contributions to SSE measurements.
Figure S1 (a) shows low-T measurements of the logarithmic-in-T resistance rise observed at H=0 in several of our Pt
�lms grown on polished Cu2OSeO3 crystal surfaces for SSE measurements. The behavior is typical of two-dimensional
(2D) thin �lms where the resistance rise is dictated by weak localization and electron-electron interaction e�ects [36].
The logarithmic temperature derivative [dashed lines, Fig. S1 (a)] should scale with the sheet resistance (a measure
of the disorder in 2D) according to theory,

∆R

R
= − e2

2π2~
R�(T0)αT ln(T/T0), (1)

where R� is the sheet resistance, T0 is a reference temperature [taken to be the temperature of the resistance minimum
in Fig. S1 (a)], and αT is a material constant determined by the strength of weak localization and interaction e�ects
[36]. The value of αT ≈ 1 for our �lms [Fig. S1 (b)] is in excellent agreement with the established value [37] for Pt
�lms from the 1980's, αT = 1.01± 0.07.

The �lms also exhibit Hall resistivities [Fig. S1 (c)] that are linear-in-�eld with slopes passing through the origin
� the absence of an o�set that is the signature of an anomalous Hall e�ect associated with magnetism indicates that
the interface magnetism observed in some cases for Pt/YIG interfaces is absent for Pt/Cu2OSeO3 heterostructures.
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FIG. S1. (a) low-T logarithmic-in-T resistance increase for 5 Pt �lms deposited on Cu2OSeO3 crystals, (b) scaling of lnT
resistance rise with sheet resistance, (c) linear-in-�eld Hall resistivity for one of the �lms at low temperature.
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FIG. S2. ∆κ ≡ κ(0.45T) − κ(0) vs. T for the three crystals from this study.

CALCULATIONS TO ESTIMATE κL

Details of the analysis to estimate the lattice thermal conductivity of crystal 1 and other similar Cu2OSeO3 crystals
were presented in Ref. [11]. For convenience we include those details here. The Callaway model [38], incorporating its
recent update [39], was employed to compute κL(T ) for each of the crystals, with parameter ranges restricted by the
following constraints: (1) κL �ts the low-T , high-�eld data (where κL is inferred directly) and the T ≥ 15 K, zero-�eld
data (where κm is inferred to be negligible by the vanishing of ∆κ ≡ κ(0.45T)− κ(0), Fig. S2) and (2) the maximum
in κm, computed by subtracting κL from κ measured in the fully-polarized phase, should occur at T ≈ 5− 6 K where
∆κ has its maximum (Fig. S2). The integral expression for κL is,

κL =
kB

2π2v

(
kB
~

)3

T 3

[∫ ΘD/T

0

x4ex

(ex − 1)
2 τC(x, T )dx

](
1 +

τC(x, T )/τN (x, T )

τC(x, T )/τR(x, T )

)
,

with f(T ) =

∫ ΘD/T

0

x4ex

(ex − 1)
2 f(x, T )dx

/∫ ΘD/T

0

x4ex

(ex − 1)
2 dx,

where v is the Debye averaged sound velocity (see above), ΘD = (~v/kB)(6π2N/V )1/3 the Debye temperature,
x = ~ω/kBT the reduced phonon energy, τ−1

C (x, T ) = τ−1
N (x, T ) + τ−1

R (x, T ), and τ−1
N (x, T ) and τ−1

R (x, T ) are phonon
scattering rates for normal (momentum conserving) and resistive (momentum non-conserving) processes, respectively.
τ−1
R (x, T ) included terms for scattering from boundaries, other phonons (Umklapp scattering), and point-like defects
(Rayleigh),

τ−1
R (x, T ) = v/`ph +Ax2T 4 exp

(
−ΘD

bT

)
+ Cx4T 4,

where `ph = `0 is the boundary-limited phonon mean-free path and A, b, C are constants. The normal scattering
rate was taken to have the same frequency dependence as for Umklapp scattering [39], but without the exponential
T dependency, τ−1

N (x, T ) = γAx2T 4, with γ a dimensionless constant.

Fig. S3 shows κ(H = 0, T ) data for crystal 1 (with `0 = 0.60 mm) and crystal 2, along with two κL curves for each
(solid and dash-dotted curves). These curves border shaded ranges de�ned by the constraints noted above. The κL �ts
for crystal 1 with `0 = 0.47 mm used the same parameters as the curves for `0 = 0.60 mm, but with `ph = 0.47 mm.
The values of κL used in subtraction to determine κm [Fig.'s 1 (e), S4 (b), S5 (b)] correspond to the average of the
solid and dash-dotted curves, with error bars determined by the width of the shaded region.
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FIG. S3. (a) Zero-�eld thermal conductivity for crystal 1 (`0 = 0.60 mm), and crystal 2 (`0 = 0.31 mm) on (b) log-log and (c)
linear scaling (blue circles). Also shown in (b) are κ(5T ) ≈ κL (red circles). Callaway-model calculations for di�erent parameter
sets are represented by solid and dashed-dotted curves with the shaded region between them a measure of the uncertainty in
κL re�ected in the error bars for κm in Fig.'s 1-3, S4, S5. The solid (dash-dotted) curves in (a) used: v = 2.06 (2.15) km/s,
A = 1.87 (1.77) × 104 K−4, b = 6.35 (6.6), C = 36 (37) K−4, γ = 1/100 (1/100); The solid (dash-dotted) curves in (c) used:
v = 2.35 (2.35) km/s, A = 1.47 (1.62) × 104 K−4, b = 6.6 (6.4), C = 23.6 (28) K−4, γ = 1/30 (1/50).

MAGNON SCATTERING RATES

Forney and Jäckle [27] computed the thermally averaged 3-magnon and 4-magnon normal (3N , 4N) and umklapp
(3U , 4U) scattering rates and magnon-impurity scattering rate (i) for a quadratic magnon dispersion within the Born
approximation, valid for small impurity concentration and T � TC :

τ−1
3N = 2.6S

kB
~
T 2
dT

−3/2
e T 1/2, τ−1

4N = 6.1× 10−4 kBT
4

S2~T 3
e

,

τ−1
3U = 1.4× 103 SkBT

2
d

~(TeT )1/2
exp (−12Te/T ), τ−1

4U =
2

S2

kBT
3/2

~T 1/2
e

exp (−12Te/T ), τ−1
i = 0.4c

kB
~
kBT

5/2

T
3/2
e

,

where

Td =
(gµB)2

kBa3
, Te =

2SJ

kB
.

As described in our prior work [11], we initially re-scaled the values Td = 0.012 K and Te = 1.0 K employed in Ref. [27]
for EuS (TC = 16.5 K) using the ratio of lattice constants and TC (as a surrogate for J). These gave Td = 0.004 K and
Te = 3.5 K. Subsequently we settled on Te = 4.2 K which provided better agreement with the data. The scattering
rates were adopted without modi�cation with the exception of the Umklapp rate prefactors. τ−1

4U was decreased by a
factor 45 so as to produce better agreement with the maxima in κm at T ∼ 5−6 K. τ−1

3U was increased by a factor 5 to
produce a stronger T dependence of τth that yielded better agreement with the SLSSE data at T & 10 K. With these
modi�cations, the only remaining adjustable parameters for the three specimens were the impurity concentration (c)
and the magnon domain size (`m), where τ

−1
b = `m/〈vm〉, and the thermally averaged magnon velocity is,

〈vm〉 ≡
πωZB

2qm

∫ 1

0

dqq2vm
xex

(ex − 1)
2

/∫ 1

0

dqq2 xex

(ex − 1)
2 .

As noted in the main text, a small spin gap ∆ = 0.3 meV was included in the dispersion because it substantially
improved agreement with κm and SLSSE on the low-T side of their maxima.

DATA FOR OTHER SPECIMENS

Figure S4 and S5 show data sets for the other two crystals (with `0 = 0.60 and 0.31 mm) for which some data is
presented in Fig. 3.
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FIG. S4. (a) SSE coe�cient and (b) magnon thermal conductivity vs. applied �eld for various temperatures for crystal 1 with
`0 = 0.60 mm. Error bars are discussed in the main text, in the caption of Fig. S3, and in Ref. 11. The shading distinguishes
the conical (C ) spin phase from helical (H ) and fully-polarized (FP) phases at lower and higher �eld, respectively. (c) zero-
�eld κ(T ) for this crystal with di�erent dimensions. (d) Temperature dependence of the spin-Seebeck coe�cient and magnon
thermal conductivity in the fully-polarized phase at µ0H = 0.45 T. Solid and dashed curves were produced using Eq.'s (1) and
(2) with parameters listed in Table 1.
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FIG. S5. (a) SSE coe�cient and (b) magnon thermal conductivity vs. applied �eld for various temperatures for crystal 2 with
`0 = 0.31 mm. Error bars are discussed in the main text, in the caption of Fig. S3, and in Ref. 11. The shading distinguishes
the conical (C ) spin phase from helical (H ) and fully-polarized (FP) phases at lower and higher �eld, respectively. (c) zero-�eld
κ(T ) comparing both specimens. (d) Temperature dependence of the spin-Seebeck coe�cient and magnon thermal conductivity
in the fully-polarized phase at µ0H = 0.45 T. Solid and dashed curves were produced using Eq.'s (1) and (2) with parameters
listed in Table 1.
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FIG. S6. (a) (τth/τR)1/2 = (`th/`R)1/2 vs. T using `th and `R from Fig. 2 (b) employed to �t the κm and SLSSE data in
Fig. 2 (a). Integrals for SLSSE from Eq. (2) plotted against the κm integral from Eq. (1). Axes are scaled so that the maximum
of the experimental T range (15K) corresponds to the data point indicated by the arrow.

RELATIONSHIP BETWEEN SLSSE AND κm

Figure S6 (a) shows the relatively weak T dependence of the relaxation-time factor (τth/τR)
1/2

that distinguishes
SLSSE from κm. Figure S6 (b) demonstrates the power-law relationship between the integrals in Eq.'s (1) and (2)
de�ning κm and SLSSE (the scaling is adjusted so that T = 15 K corresponds to the data point indicated). The
inverse of this exponent, n = 1/0.852 ' 1.17, de�nes the relationship (SLSSE)

n ∝ κm described in Fig. 3.
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